SUMMARY REPORT 403 WEST LAUREL BAY BOULEVARD (FORMERLY 518 WEST LAUREL BAY BOULEVARD) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid-Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

JUNE 2021

SUMMARY REPORT 403 WEST LAUREL BAY BOULEVARD (FORMERLY 518 WEST LAUREL BAY BOULEVARD) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid- Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016 CTO WE52 JUNE 2021

Summary Report 403 West Laurel Bay Boulevard (Formerly 518 West Laurel Bay Boulevard) Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort June 2021

Table of Contents

1.0	INTRODUCTION	1
1.1 1.2	Background Information UST Removal and Assessment Process	
2.0	SAMPLING ACTIVITIES AND RESULTS	3
2.1 2.2 2.3 2.4 2.5 2.6	UST REMOVAL AND SOIL SAMPLING SOIL ANALYTICAL RESULTS INITIAL GROUNDWATER SAMPLING INITIAL GROUNDWATER ANALYTICAL RESULTS PERMANENT WELL GROUNDWATER SAMPLING PERMANENT WELL GROUNDWATER ANALYTICAL RESULTS	455
3.0	PROPERTY STATUS	6
4.0	REFERENCES	.7

Tables

- Table 2
 Laboratory Analytical Results Initial Groundwater
- Table 3
 Laboratory Analytical Results Permanent Monitoring Well Groundwater

Appendices

- Appendix A Multi-Media Selection Process for LBMH
- Appendix B UST Assessment Report
- Appendix C Laboratory Analytical Report Initial Groundwater
- Appendix D Laboratory Analytical Report Permanent Well Groundwater
- Appendix E Regulatory Correspondence

List of Acronyms

below ground surface
benzene, toluene, ethylbenzene, and xylenes
Contract Task Order
constituents of potential concern
feet
Indefinite Delivery, Indefinite Quantity
Initial Groundwater Assessment
Joint Venture
Laurel Bay Military Housing
Marine Corps Air Station
Naval Facilities Engineering Command Mid-Atlantic
No Further Action
polynuclear aromatic hydrocarbon
Quality Assurance Program Plan
risk-based screening level
South Carolina Department of Health and Environmental Control
LBMH area at MCAS Beaufort, South Carolina
underground storage tank
vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 403 West Laurel Bay Boulevard (Formerly 518 West Laurel Bay Boulevard). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area

is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential heating oil USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan (QAPP) for the Underground Storage Tank Management Division, Revision 3.1* (SCDHEC, February 2016) and the *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service*, (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management*

Division (SCDHEC, February 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the OAPP (SCDHEC, April 2013) and were revised again in Revision 3.0 (SCDHEC, May 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The IGWA sampling process utilizes temporary groundwater sampling points that are typically installed and sampled within the same day. The intent of the sampling point is to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations may require additional delineation of COPCs in groundwater. These sampling points are not subjected to the same installation standards as permanent monitoring wells and, as such; the data obtained from the IGWA wells can sometimes be biased high and is considered preliminary data. In order to confirm the presence of any impact to groundwater, a permanent well is installed where IGWA sampling has indicated the presence of COPCs is in excess of the SCDHEC RBSLs for groundwater. If COPCs are found to be present in the permanent well, additional permanent wells are installed to delineate the extent of impact to groundwater and a sampling program is established. Groundwater analytical results from permanent wells are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 403 West Laurel Bay Boulevard (Formerly 518 West Laurel Bay Boulevard). The sampling activities at 403 West Laurel Bay Boulevard (Formerly 518 West Laurel Bay Boulevard) comprised a soil investigation, IGWA sampling and installation and sampling of a permanent well. Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report – 518 Laurel Bay Boulevard* (MCAS Beaufort, 2012). The UST Assessment Report is provided in Appendix B. Details regarding the IGWA sampling activities at this site are provided in the *Initial Groundwater Investigation Report – May and June 2015* (Resolution Consultants, 2015). The laboratory report that includes the pertinent IGWA analytical results for this site is

presented in Appendix C. Details regarding the permanent well installation and sampling activities at this site are provided in the *Groundwater Assessment Report – June and July 2016* (Resolution Consultants, 2016). The laboratory report that includes the pertinent groundwater analytical results for this site is presented in Appendix D.

2.1 UST Removal and Soil Sampling

On January 19, 2012, a single 280 gallon heating oil UST was removed from the front landscaped bed area adjacent to the driveway at 403 West Laurel Bay Boulevard (Formerly 518 West Laurel Bay Boulevard). The former UST location is indicated on Figures 2 and 3 of the UST Assessment Report (Appendix B). The UST was removed and properly disposed of (i.e., shipped offsite for recycling or transported to a landfill). There was no visual evidence (i.e., staining or sheen) of petroleum impact at the time of the UST removal. According to the UST Assessment Report (Appendix B), the depth to the base of the UST was 5'11" bgs and a single soil sample was collected from that depth. The sample was collected from the fill port side of the former UST to represent a worst case scenario.

Following UST removal, a soil sample was collected from the base of the excavation and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data report is included in the UST Assessment Report presented in Appendix B. The laboratory analytical data report includes the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST location were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from 403 West Laurel Bay Boulevard (Formerly 518 West Laurel Bay Boulevard) were greater than the SCDHEC RBSLs, which indicated further investigation was required. In a letter dated May 15, 2014, SCDHEC requested an IGWA for 403 West Laurel Bay Boulevard (Formerly 518 West Laurel Bay Boulevard) were greater than the

Laurel Bay Boulevard) to determine if the groundwater was impacted by petroleum COPCs. SCDHEC's request letter is provided in Appendix E.

2.3 Initial Groundwater Sampling

On June 9, 2015, a temporary monitoring well was installed at 403 West Laurel Bay Boulevard (Formerly 518 West Laurel Bay Boulevard), in accordance with the South Carolina Well Standards and Regulations (R.61-71.H-I, updated June 24, 2016). In order to provide data that can be used to determine whether COPCs are migrating to underlying groundwater, the monitoring well was placed in the same general location as the former heating oil UST. The former UST location is indicated on Figures 2 and 3 of the UST Assessment Report (Appendix B). Further details are provided in the *Initial Groundwater Investigation Report – May and June 2015* (Resolution Consultants, 2015).

The sampling strategy for this phase of the investigation required a one-time sampling event of the temporarily installed monitoring well. Following well installation and development, groundwater samples were collected using low-flow methods and shipped to an offsite laboratory for analysis of the petroleum COPCs. Upon completion of groundwater sampling, the temporary well was abandoned in accordance with the South Carolina Well Standards and Regulations R.61-71.H-I (SCDHEC, 2016). Field forms are provided in the *Initial Groundwater Investigation Report – May and June 2015* (Resolution Consultants, 2015).

2.4 Initial Groundwater Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 2. A copy of the laboratory analytical data report is included in Appendix C.

The groundwater results collected from 403 West Laurel Bay Boulevard (Formerly 518 West Laurel Bay Boulevard) were greater than the SCDHEC RBSLs and the site specific groundwater VISLs (Table 2), which indicated further investigation was required. In a letter dated February 22, 2016, SCDHEC requested a permanent well be installed for 403 West Laurel Bay Boulevard (Formerly 518 West Laurel Bay Boulevard) to confirm the impact to groundwater detected in the temporary well sample. SCDHEC's request letter is provided in Appendix E.

2.5 Permanent Well Groundwater Sampling

On July 8, 2016, a permanent monitoring well was installed at 403 West Laurel Bay Boulevard (Formerly 518 West Laurel Bay Boulevard), in accordance with the South Carolina Well Standards and Regulations (R.61-71.H-I, updated June 24, 2016). In order to provide data that can be used to determine whether COPCs are migrating to underlying groundwater, the monitoring well was placed in the same general location as the former heating oil UST and the IGWA sample location. The former UST location is indicated on Figures 2 and 3 of the UST Assessment Report (Appendix B). Further details are provided in the *Groundwater Assessment Report – June and July 2016* (Resolution Consultants, 2016).

The sampling strategy for this phase of the investigation required a one-time sampling event of the permanent monitoring well. Following well installation and development, groundwater samples were collected using low-flow methods and shipped to an offsite laboratory for analysis of the petroleum COPCs. Field forms are provided in the *Groundwater Assessment Report – June and July 2016* (Resolution Consultants, 2016).

2.6 Permanent Well Groundwater Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 3. A copy of the laboratory analytical data report is included in Appendix D.

The groundwater results collected from 403 West Laurel Bay Boulevard (Formerly 518 West Laurel Bay Boulevard) were less than the SCDHEC RBSLs and the site specific groundwater VISLs (Table 3), which indicated that the groundwater was not impacted by COPCs associated with the former UST at concentrations that present a potential risk to human health and the environment.

3.0 PROPERTY STATUS

Based on the analytical results for groundwater collected from the permanent monitoring well, SCDHEC made the determination that NFA was required for 403 West Laurel Bay Boulevard (Formerly 518 West Laurel Bay Boulevard). This NFA determination was obtained in a letter dated March 9, 2017. SCDHEC's NFA letter is provided in Appendix E.

4.0 REFERENCES

- Marine Corps Air Station Beaufort, 2012. South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report – 518 Laurel Bay Boulevard, Laurel Bay Military Housing Area, April 2012.
- Resolution Consultants, 2015. *Initial Groundwater Investigation Report May and June 2015 for Laurel Bay Military Housing Area, Multiple Properties, Marine Corps Air Station Beaufort, Beaufort, South Carolina*, October 2015.
- Resolution Consultants, 2016. *Groundwater Assessment Report June and July 2016 for Laurel Bay Military Housing Area, Multiple Properties, Marine Corps Air Station Beaufort, Beaufort, South Carolina*, December 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations*, March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service, March 2018.
- South Carolina Department of Health and Environmental Control Bureau of Water, 2016. *R.61-71, Well Standards*, June 2016.

Tables

Table 1Laboratory Analytical Results - Soil403 West Laurel Bay Boulevard (Formerly 518 West Laurel Bay Boulevard)Laurel Bay Military Housing AreaMarine Corps Air Station BeaufortBeaufort, South Carolina

Constituent	SCDHEC RBSLs ⁽¹⁾	Results Sample Collected 01/19/12			
Volatile Organic Compounds Analyzed	d by EPA Method 8260B (mg/kg)				
Benzene	0.003	ND			
Ethylbenzene	1.15	0.843			
Naphthalene	0.036	9.46			
Toluene	0.627	0.0105			
Xylenes, Total	13.01	0.958			
Semivolatile Organic Compounds Ana	alyzed by EPA Method 8270D (mg/kg)				
Benzo(a)anthracene	0.066	1.08			
Benzo(b)fluoranthene	0.066	0.899			
Benzo(k)fluoranthene	0.066	0.673			
Chrysene	0.066	1.58			
Dibenz(a,h)anthracene	0.066	0.634			

Notes:

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 1.1 (SCDHEC, February 2011).

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligrams per kilogram

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The soil laboratory report is provided in Appendix B.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

Table 2 Laboratory Analytical Results - Initial Groundwater 403 West Laurel Bay Boulevard (Formerly 518 West Laurel Bay Boulevard) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	SCDHEC RBSLs ⁽¹⁾	Site-Specific Groundwater VISLs (µg/L) ⁽²⁾	Results Sample Collected 06/10/15							
Volatile Organic Compounds Analyzed by EPA Method 8260B (µg/L)										
Benzene	5	16.24	ND							
Ethylbenzene	700	45.95	2.6							
Naphthalene	25	29.33	47							
Toluene	1000	105,445	ND							
Xylenes, Total	10,000	2,133	4.1							
Semivolatile Organic Compounds Ana	alyzed by EPA Method 8	270D (µg/L)								
Benzo(a)anthracene	10	NA	ND							
Benzo(b)fluoranthene	10	NA	ND							
Benzo(k)fluoranthene	10	NA	ND							
Chrysene	10	NA	ND							
Dibenz(a,h)anthracene	10	NA	ND							

Notes:

(1) South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.0 (SCDHEC, May 2015).

⁽²⁾ Site-specific groundwater VISLs were calculated using the EPA JE Model Spreadsheets (Version 3.1, February 2004) and conservative modeling inputs representative of a small single-story house with an 8 foot ceiling. Site-specific groundwater VISLs were developed based on a target risk level of 1x10⁻⁶, a target hazard quotient of 1 (per target organ), and a default residential exposure scenario, assuming exposure for 24 hours/day, 350 days/year, for 26 years. Modeling was performed for a range of depths to groundwater for application as appropriate in different areas of the Laurel Bay Military Housing Area. The most conservative levels are presented for comparison. Refer to Appendix H of the Uniform Federal Policy Sampling Analysis and Sampling Plan for Vapor Media, Revision 4 (Resolution Consultants, April 2017) for additional information.

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL and/or the Site-Specific Groundwater VISL.

EPA - United States Environmental Protection Agency

JE - Johnson & Ettinger

NA - not applicable

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The groundwater laboratory report is provided in Appendix C.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

µg/L - micrograms per liter

VISL - Vapor Intrusion Screening Level

Table 3

Laboratory Analytical Results - Permanent Well Groundwater 403 West Laurel Bay Boulevard (Formerly 518 West Laurel Bay Boulevard) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent	SCDHEC RBSLs ⁽¹⁾	Site-Specific Groundwater VISLs (µg/L) ⁽²⁾	Results Sample Collected 07/26/16		
Volatile Organic Compounds Analy	zed by EPA Method 8260E	8 (µg/L)			
Benzene	5	16.24	ND		
Ethylbenzene	700	45.95	1.5		
Naphthalene	25	29.33	20		
Toluene	1000	105,445	ND		
Xylenes, Total	10,000	2,133	2.6		
Semivolatile Organic Compounds A	nalyzed by EPA Method 8	270D (µg/L)			
Benzo(a)anthracene	10	NA	ND		
Benzo(b)fluoranthene	10	NA	ND		
Benzo(k)fluoranthene	10	NA	ND		
Chrysene	10	NA	ND		
Dibenz(a,h)anthracene	10	NA	ND		

Notes:

(1) South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.1 (SCDHEC, February 2016).

⁽²⁾ Site-specific groundwater VISLs were calculated using the EPA JE Model Spreadsheets (Version 3.1, February 2004) and conservative modeling inputs representative of a small single-story house with an 8 foot ceiling. Site-specific groundwater VISLs were developed based on a target risk level of 1x10⁻⁶, a target hazard quotient of 1 (per target organ), and a default residential exposure scenario, assuming exposure for 24 hours/day, 350 days/year, for 26 years. Modeling was performed for a range of depths to groundwater for application as appropriate in different areas of the Laurel Bay Military Housing Area. The most conservative levels are presented for comparison. Refer to Appendix H of the Uniform Federal Policy Sampling Analysis and Sampling Plan for Vapor Media, Revision 4 (Resolution Consultants, April 2017) for additional information.

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL and/or the Site-Specific Groundwater VISL.

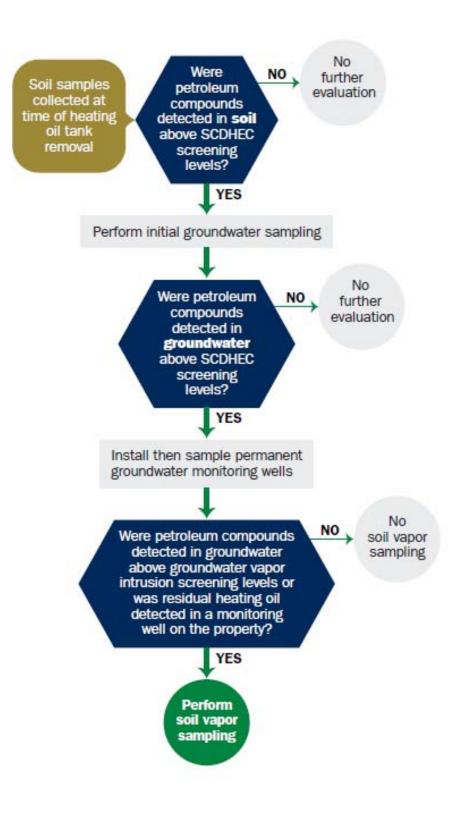
EPA - United States Environmental Protection Agency

JE - Johnson & Ettinger

NA - not applicable

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The groundwater laboratory report is provided in Appendix D.

RBSL - Risk-Based Screening Level


SCDHEC - South Carolina Department Of Health and Environmental Control

µg/L - micrograms per liter

VISL - Vapor Intrusion Screening Level

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Report

Attachment 1

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Date Received	see.		1.1973		Restored RESIS	
				1	aring -	
	Sta	te Use (Only			1

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

	Commanding Officer Attn: NH	REAO (Craig Ehde)							
Owner Name (Corporation, Individual, Public Agency, Other)									
P.O. Box 55001									
Mailing Address									
Beaufort,	South Carolina	29904-5001							
City	State	Zip Code							
843	228-7317	Craig Ehde							
Area Code	Telephone Number	Contact Person							

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. # Laurel Bay Militar Facility Name or Company	— Ty Housing Area, Mar: Site Identifier	ine Corps Air	Station, Beaufort, SC	_
518 Laurel Bay Bl Street Address or State Roa	vd., Laurel Bay Mili d(asapplicable)	tary Housing	Area	-
Beaufort,	Beaufort			
City	County		······································	-
			Attachment 2	_

III. INSURANCE INFORMATION

Insurance Statement

The petroleum release reported to DHEC on ______ at Permit ID Number _____ may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. This section must be completed.

Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? YES____ NO_____ (check one)

If you answered **YES** to the above question, please complete the following information:

My policy provider is: ______ The policy deductible is: ______ The policy limit is:

If you have this type of insurance, please include a copy of the policy with this report.

IV. REQUEST FOR SUPERB FUNDING

I DO / DO NOT wish to participate in the SUPERB Program. (Circle one.)

V. CERTIFICATION (To be signed by the UST owner)

I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

Name (Type or print.)

Signature

To be completed by Notary Public:

Sworn before me this ______ day of _____, 20____

(Name)

Notary Public for the state of ______. Please affix State seal if you are commissioned outside South Carolina

VI. UST INFORMATION

		LaurelBB
A.	Product(ex. Gas, Kerosene)	Heating oil
B.	Capacity(ex. 1k, 2k)	280 gal
C.	Age	Late 1950s
D.	Construction Material(ex. Steel, FRP)	Steel
Е·	Month/Year of Last Use	Mid 1980s
F.	Depth (ft.) To Base of Tank	5'11"
G.	Spill Prevention Equipment Y/N	No
н∙	Overfill Prevention Equipment Y/N	No
I.	Method of Closure Removed/Filled	Removed
J.	Date Tanks Removed/Filled	1/19/12
К.	Visible Corrosion or Pitting Y/N	Yes
L.	Visible Holes Y/N	Yes

518

M. Method of disposal for any USTs removed from the ground (attach disposal manifests) <u>UST 518LaurelBB was removed from the ground and disposed at a</u> Subtitle "D" landfill. See Attachment "A".

N. Method of disposal for any liquid petroleum, sludges, or wastewaters removed from the USTs (attach disposal manifests) UST 518Laure1BB had been previously filled with sand by others.

O. If any corrosion, pitting, or holes were observed, describe the location and extent for each UST Corrosion, pitting and holes were found throughout the tank.

VII. PIPING INFORMATION

		518
		LaurelBB
		Steel
A.	Construction Material(ex. Steel, FRP)	& Copper
B.	Distance from UST to Dispenser	N/A
C.	Number of Dispensers	N/A
D.	Type of System Pressure or Suction	Suction
E.	Was Piping Removed from the Ground? Y/N	No
F.	Visible Corrosion or Pitting Y/N	Yes
G.	Visible Holes Y/N	No
H.	Age	Late 1950s
т	If any comparison mitting, on holes were charmed do	

I. If any corrosion, pitting, or holes were observed, describe the location and extent for each piping run.

Corrosion and pitting were found on the surface of the steel vent pipe. Copper supply and return lines were sound.

VIII. BRIEF SITE DESCRIPTION AND HISTORY

The	USTs	at	the	reside	ences a	are (const	ructed	l of	5 sing	le	wall	steel	
and	forme	erly	r con	tained	l fuel	oil	for	heatir	ıg.	These	US'	Ts we	ere	
inst	alled	1 in	the	a late	1950s	and	last	used	in	the m	id	1980s	ι.	

IX. SITE CONDITIONS

	Yes	No	Unk
A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells?		х	
If yes, indicate depth and location on the site map.		<u> </u>	
B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells?	5	х	
If yes, indicate location on site map and describe the odor (strong, mild, etc.)			
C. Was water present in the UST excavation, soil borings, or trenches?		х	
If yes, how far below land surface (indicate location and depth)?			
D. Did contaminated soils remain stockpiled on site after closure?		Х	
If yes, indicate the stockpile location on the site map.			
Name of DHEC representative authorizing soil removal:			
E. Was a petroleum sheen or free product detected on any excavation or boring waters?		х	
If yes, indicate location and thickness.			

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

В.

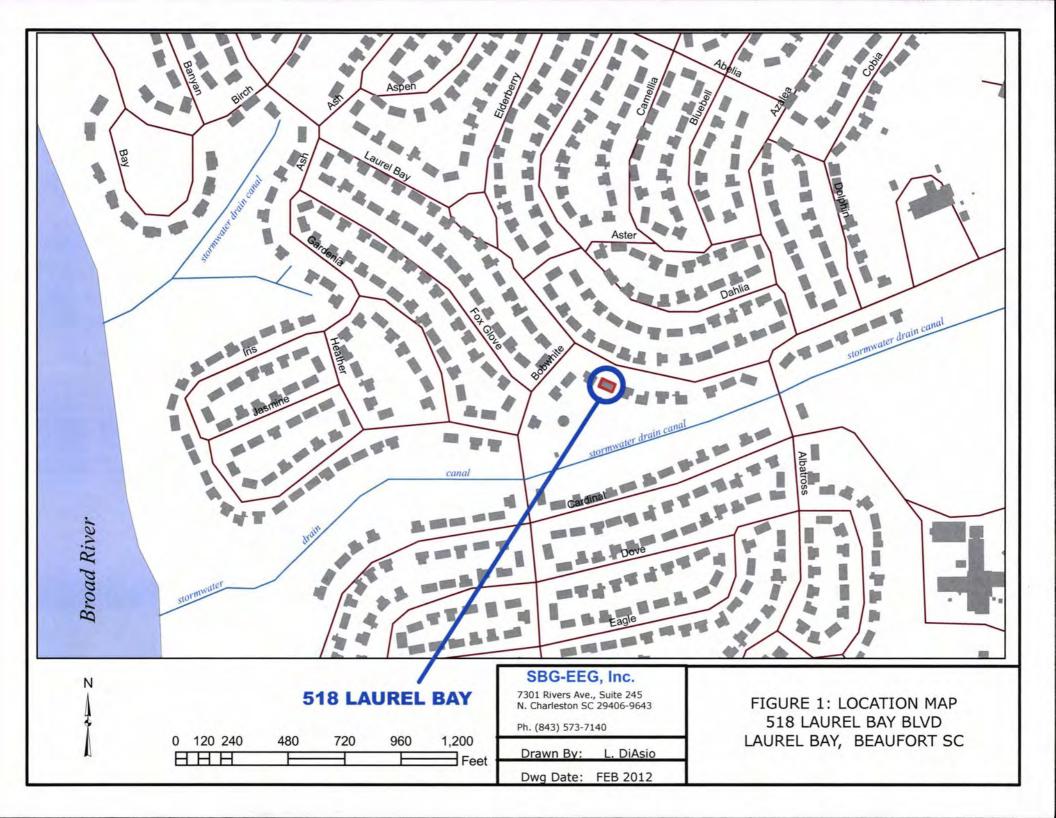
Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA #
518 Laurel BB	Excav at fill end	Soil	Sandy	5'11"	1/19/12 1200 hrs	P. Shaw	
LAULEIBB		5011			1200 1115	1. Dildw	
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18					-		
19							
20							

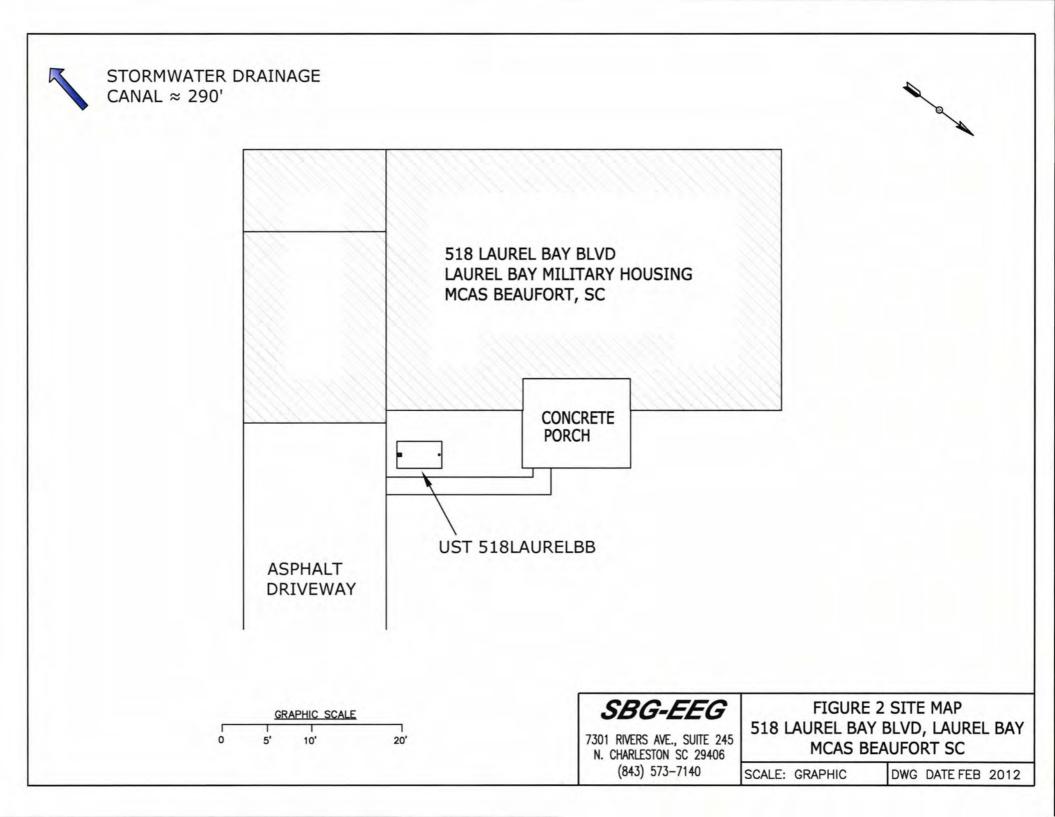
* = Depth Below the Surrounding Land Surface

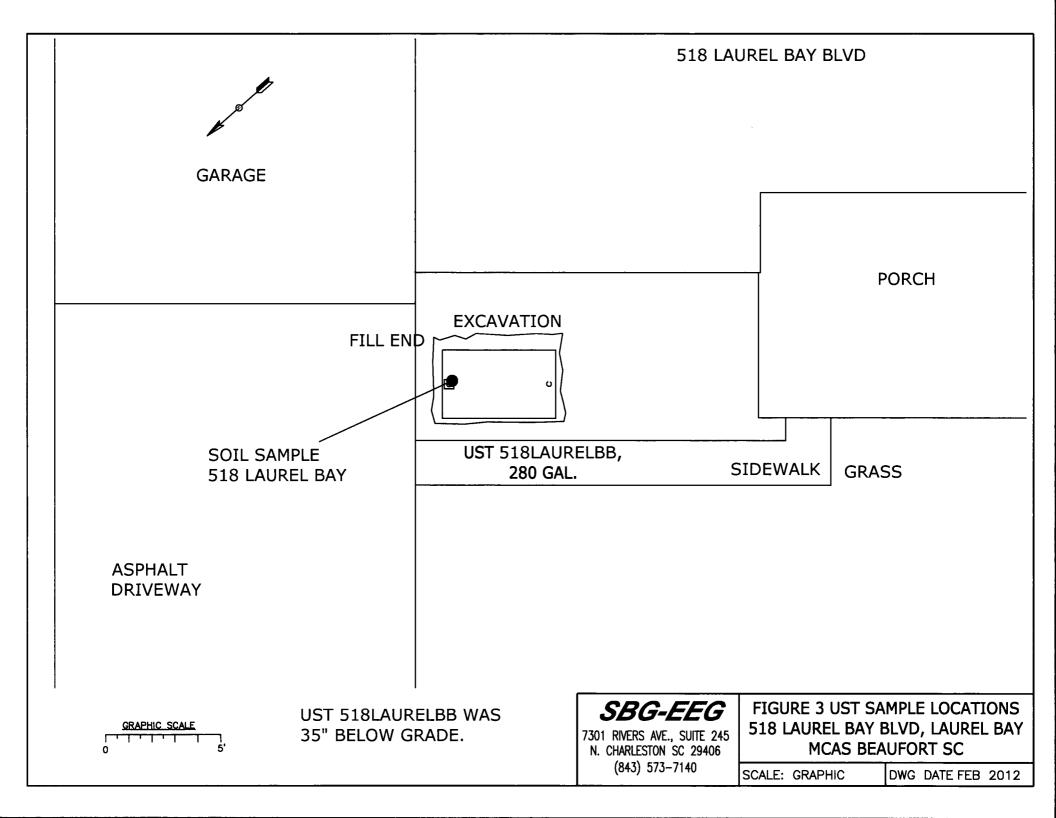
XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280 and SC DHEC Assessment Guidelines. Sample containers were prepared by the testing laboratory. The grab method was utilized to fill the sample containers leaving as little head space as possible and immediately capped. Soil samples were extracted from area below tank. The samples were marked, logged, and immediately placed in a sample cooler packed with ice to maintain an approximate temperature of 4 degrees Centigrade. Tools were thoroughly cleaned and decontaminated with the seven step decon process after each use. The samples remained in custody of SBG-EEG, Inc. until they were transferred to Test America Incorporated for analysis as documented in the Chain of Custody Record.


XII. RECEPTORS


		Yes	No
A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?	*X	
	*Stormwater drainage canal	~290'	
	If yes, indicate type of receptor, distance, and direction on site map.		
В.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		Х
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		Х
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the	*X	
	contamination? *Sewer, water, electr cable & fiber optic	lClty	
	If yes, indicate the type of utility, distance, and direction on the site map.		
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		Х
	If yes, indicate the area of contaminated soil on the site map.		


XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 518LaureIBB.

Picture 2: UST 518LaurelBB excavation.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

[
CoC UST	518LaurelBB
Benzene	ND
Toluene	0.0105 mg/kg
Ethylbenzene	0.843 mg/kg
Xylenes	0.958 mg/kg
Naphthalene	9.46 mg/kg
Benzo (a) anthracene	1.08 mg/kg
Benzo (b) fluoranthene	0.899 mg/kg
Benzo (k) fluoranthene	0.673 mg/kg
Chrysene	1.58 mg/kg
Dibenz (a, h) anthracene	0.634 mg/kg
ТРН (ЕРА 3550)	
CoC	
Benzene	
Toluene	
Ethylbenzene	
Xylenes	
Naphthalene	
Benzo (a) anthracene	
Benzo (b) fluoranthene	
Benzo (k) fluoranthene	
Chrysene	
Dibenz (a, h) anthracene	
TPH (EPA 3550)	

SUMMARY OF ANALYSIS RESULTS (cont'd) Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/l)	W -1	W-2	W -3	W -4
Free Product Thickness	None				
Benzene	5				
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
МТВЕ	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				:
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				
1,2-DCA	5	· · · · · ·			
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Road Nashville, TN 37204 Tel: 800-765-0980

TestAmerica Job ID: NWA3573

Client Project/Site: [none] Client Project Description: Laurel Bay Housing Project

For:

..... LINKS

Review your project results through

Total Access

Have a Question?

www.testamericainc.com

Visit us at:

Ask

The

Expert

EEG - Small Business Group, Inc. (2449) 10179 Highway 78 Ladson, SC 29456

Attn: Tom McElwee

fa Ha

Authorized for release by: 2/6/2012 3:50:28 PM

Ken A. Hayes Senior Project Manager ken.hayes@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	
Table of Contents 2	?
Sample Summary 3	;
Definitions 4	ŀ
Client Sample Results 5	;
QC Sample Results 9)
QC Association 1	5
Chronicle	7
Method Summary 1	8
Certification Summary 1	9
Chain of Custody 2	20

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
NWA3573-01	1349 Cardinal	Soil	01/16/12 15:00	01/21/12 08:30
NWA3573-02	334 Ash	Soil	01/18/12 16:15	01/21/12 08:30
NWA3573-03	518 Laurel Bay	Soil	01/19/12 12:00	01/21/12 08:30

Definitions/Glossary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

Qualifian

Qualifiers		
GCMS Volatil	les	
Qualifier	Qualifier Description	
ZX	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.	
GCMS Semiv	volatiles	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¢.	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CNF	Contains no Free Liquid	
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
EDL	Estimated Detection Limit	
EPA	United States Environmental Protection Agency	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RL	Reporting Limit	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

TEQ Toxicity Equivalent Quotient (Dioxin)

Ē

Client Sample ID: 1349 Cardinal

Date Collected: 01/16/12 15:00

Date Received: 01/21/12 08:30

Lab Sample ID: NWA3573-01 Matrix: Soil Percent Solids: 87

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00259	0.00142	mg/kg dry	ō.	01/16/12 15:00	01/24/12 20:18	1.00
Ethylbenzene	ND		0.00259	0.00142	mg/kg dry	¢	01/16/12 15:00	01/24/12 20:18	1.00
Naphthalene	ND		0.00647	0.00323	mg/kg dry	¢	01/16/12 15:00	01/24/12 20:18	1.00
Toluene	ND		0.00259	0.00142	mg/kg dry	ø	01/16/12 15:00	01/24/12 20:18	1.00
Xylenes, total	ND		0.00647	0.00323	mg/kg dry	ø	01/16/12 15:00	01/24/12 20:18	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	102		70 - 130				01/16/12 15:00	01/24/12 20:18	1.00
Dibromofluoromethane	99		70 - 130				01/16/12 15:00	01/24/12 20:18	1.00
Toluene-d8	100		70 - 130				01/16/12 15:00	01/24/12 20:18	1.00
4-Bromofluorobenzene	105		70 - 130				01/16/12 15:00	01/24/12 20:18	1.00

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND	-	0.0762	0.0387	mg/kg dry	Q.	01/24/12 09:05	01/24/12 22:51	1.00
Acenaphthylene	ND		0.0762	0.0387	mg/kg dry	ø	01/24/12 09:05	01/24/12 22:51	1.00
Anthracene	ND		0.0762	0.0387	mg/kg dry	¢	01/24/12 09:05	01/24/12 22:51	1.00
Benzo (a) anthracene	ND		0.0762	0.0387	mg/kg dry	¢	01/24/12 09:05	01/24/12 22:51	1.00
Benzo (a) pyrene	ND		0.0762	0.0387	mg/kg dry	¢	01/24/12 09:05	01/24/12 22:51	1.00
Benzo (b) fluoranthene	ND		0.0762	0.0387	mg/kg dry	Ö	01/24/12 09:05	01/24/12 22:51	1.00
Benzo (g,h,i) perylene	ND		0.0762	0.0387	mg/kg dry	ø	01/24/12 09:05	01/24/12 22:51	1.00
Benzo (k) fluoranthene	ND		0.0762	0.0387	mg/kg dry	\$	01/24/12 09:05	01/24/12 22:51	1.00
Chrysene	ND		0.0762	0.0387	mg/kg dry	\$2	01/24/12 09:05	01/24/12 22:51	1.00
Dibenz (a,h) anthracene	ND		0.0762	0.0387	mg/kg dry	¢	01/24/12 09:05	01/24/12 22:51	1.00
Fluoranthene	ND		0.0762	0.0387	mg/kg dry	ø	01/24/12 09:05	01/24/12 22:51	1.00
Fluorene	ND		0.0762	0.0387	mg/kg dry	ø	01/24/12 09:05	01/24/12 22:51	1.00
ndeno (1,2,3-cd) pyrene	ND		0.0762	0.0387	mg/kg dry	\$	01/24/12 09:05	01/24/12 22:51	1.00
Naphthalene	ND		0.0762	0.0387	mg/kg dry	ø	01/24/12 09:05	01/24/12 22:51	1.00
Phenanthrene	ND		0.0762	0.0387	mg/kg dry	₿ 20	01/24/12 09:05	01/24/12 22:51	1.00
Pyrene	ND		0.0762	0.0387	mg/kg dry	¢	01/24/12 09:05	01/24/12 22:51	1.00
1-Methylnaphthalene	ND		0.0762	0.0387	mg/kg dry	\$	01/24/12 09:05	01/24/12 22:51	1.00
2-Methylnaphthalene	ND		0.0762	0.0387	mg/kg dry	Ŷ	01/24/12 09:05	01/24/12 22:51	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	82		18 - 120				01/24/12 09:05	01/24/12 22:51	1.00
2-Fluorobiphenyl	58		14 - 120				01/24/12 09:05	01/24/12 22:51	1.00
Nitrobenzene-d5	58		17 - 120				01/24/12 09:05	01/24/12 22:51	1.00

Method: SW-846 - General Ch	emistry Paramete	rs							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
% Dry Solids	87.0		0.500	0.500	%		01/24/12 15:50	01/25/12 08:57	1.00

Client Sample ID: 334 Ash

Date Collected: 01/18/12 16:15 Date Received: 01/21/12 08:30

Lab Sample ID: NWA3573-02 Matrix: Soil Percent Solids: 85.1

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00220	0.00121	mg/kg dry	B	01/18/12 16:15	01/24/12 20:49	1.00
Ethylbenzene	ND		0.00220	0.00121	mg/kg dry	D	01/18/12 16:15	01/24/12 20:49	1.00
Naphthalene	ND		0.00550	0.00275	mg/kg dry	Ø	01/18/12 16:15	01/24/12 20:49	1.00
Toluene	ND		0.00220	0.00121	mg/kg dry	O.	01/18/12 16:15	01/24/12 20:49	1.00
Xylenes, total	ND		0.00550	0.00275	mg/kg dry	-O	01/18/12 16:15	01/24/12 20:49	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	99		70 - 130				01/18/12 16:15	01/24/12 20:49	1.00
Dibromofluoromethane	102		70 - 130				01/18/12 16:15	01/24/12 20:49	1.00
Toluene-d8	104		70 - 130				01/18/12 16:15	01/24/12 20:49	1.00
4-Bromofluorobenzene	123		70-130				01/18/12 16:15	01/24/12 20:49	1.00

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND	1	0.0775	0.0393	mg/kg dry	ō	01/24/12 09:05	01/24/12 23:12	1.00
Acenaphthylene	ND		0.0775	0.0393	mg/kg dry	C	01/24/12 09:05	01/24/12 23:12	1.00
Anthracene	ND		0.0775	0.0393	mg/kg dry	¢	01/24/12 09:05	01/24/12 23:12	1.00
Benzo (a) anthracene	ND		0.0775	0.0393	mg/kg dry	¢	01/24/12 09:05	01/24/12 23:12	1.00
Benzo (a) pyrene	ND		0.0775	0.0393	mg/kg dry	¢.	01/24/12 09:05	01/24/12 23:12	1.00
Benzo (b) fluoranthene	ND		0.0775	0.0393	mg/kg dry	42	01/24/12 09:05	01/24/12 23:12	1.00
Benzo (g.h.i) perylene	ND		0.0775	0.0393	mg/kg dry	¢	01/24/12 09:05	01/24/12 23:12	1.00
Benzo (k) fluoranthene	ND		0.0775	0.0393	mg/kg dry	35	01/24/12 09:05	01/24/12 23:12	1.00
Chrysene	ND		0.0775	0.0393	mg/kg dry	D	01/24/12 09:05	01/24/12 23:12	1.00
Dibenz (a,h) anthracene	ND		0.0775	0.0393	mg/kg dry	¢	01/24/12 09:05	01/24/12 23:12	1.00
Fluoranthene	ND		0.0775	0.0393	mg/kg dry	\diamond	01/24/12 09:05	01/24/12 23:12	1.00
Fluorene	ND		0.0775	0.0393	mg/kg dry	¢	01/24/12 09:05	01/24/12 23:12	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0775	0.0393	mg/kg dry	45	01/24/12 09:05	01/24/12 23:12	1.00
Naphthalene	ND		0.0775	0.0393	mg/kg dry	Q.	01/24/12 09:05	01/24/12 23:12	1.00
Phenanthrene	ND		0.0775	0.0393	mg/kg dry	¢	01/24/12 09:05	01/24/12 23:12	1.00
Pyrene	ND		0.0775	0.0393	mg/kg dry	D	01/24/12 09:05	01/24/12 23:12	1.00
1-Methylnaphthalene	ND		0.0775	0.0393	mg/kg dry	D	01/24/12 09:05	01/24/12 23:12	1.00
2-Methylnaphthalene	ND		0.0775	0.0393	mg/kg dry	¢	01/24/12 09:05	01/24/12 23:12	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	78		18 - 120				01/24/12 09:05	01/24/12 23:12	1.00
2-Fluorobiphenyl	58		14 - 120				01/24/12 09:05	01/24/12 23:12	1.00
Nitrobenzene-d5	57		17 - 120				01/24/12 09:05	01/24/12 23:12	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
% Dry Solids	85.1		0.500	0.500	%		01/24/12 15:50	01/25/12 08:57	1.00

Client Sample ID: 518 Laurel Bay Date Collected: 01/19/12 12:00 Date Received: 01/21/12 08:30

Lab Sample ID: NWA3573-03 Matrix: Soil Percent Solids: 85.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00214	0.00118	mg/kg dry	ō.	01/19/12 12:00	01/24/12 21:20	1.00
Toluene	0.0105		0.00214	0.00118	mg/kg dry	¢	01/19/12 12:00	01/24/12 21:20	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	107		70 - 130				01/19/12 12:00	01/24/12 21:20	1.00
Dibromofluoromethane	109		70 - 130				01/19/12 12:00	01/24/12 21:20	1.00
Toluene-d8	705	ZX	70 - 130				01/19/12 12:00	01/24/12 21:20	1.00
4-Bromofluorobenzene	CEC	ZX	70 - 130				01/19/12 12:00	01/24/12 21:20	1.00

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B - RE1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	0.843		0.0556	0.0306	mg/kg dry	\$	01/19/12 12:00	01/24/12 21:52	50.0
Xylenes, total	0.958		0.139	0.0695	mg/kg dry	¢	01/19/12 12:00	01/24/12 21:52	50.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	96		70 - 130				01/19/12 12:00	01/24/12 21:52	50.0
Dibromofluoromethane	91		70 - 130				01/19/12 12:00	01/24/12 21:52	50.0
Toluene-d8	111		70 - 130				01/19/12 12:00	01/24/12 21:52	50.0
4-Bromofluorobenzene	115		70 - 130				01/19/12 12:00	01/24/12 21:52	50.0

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B - RE2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	9.46		1.39	0.695	mg/kg dry	ġ.	01/19/12 12:00	01/25/12 14:35	500
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	95		70 - 130				01/19/12 12:00	01/25/12 14:35	500
Dibromofluoromethane	92		70 - 130				01/19/12 12:00	01/25/12 14:35	500
Toluene-d8	104		70 - 130				01/19/12 12:00	01/25/12 14:35	500
4-Bromofluorobenzene	103		70 - 130				01/19/12 12:00	01/25/12 14:35	500

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D - RE1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	2.34		0.782	0.397	mg/kg dry	- <u>\$</u>	01/24/12 09:05	01/26/12 00:23	10.0
Acenaphthylene	1.10		0.782	0.397	mg/kg dry	\$	01/24/12 09:05	01/26/12 00:23	10.0
Anthracene	ND		0.782	0.397	mg/kg dry	4	01/24/12 09:05	01/26/12 00:23	10.0
Benzo (a) anthracene	1.08		0.782	0.397	mg/kg dry	¢	01/24/12 09:05	01/26/12 00:23	10.0
Benzo (a) pyrene	0.626	J	0.782	0.397	mg/kg dry	¢	01/24/12 09:05	01/26/12 00:23	10.0
Benzo (b) fluoranthene	0.899		0.782	0.397	mg/kg dry	\$	01/24/12 09:05	01/26/12 00:23	10.0
Benzo (g,h,i) perylene	ND		0.782	0.397	mg/kg dry	¢	01/24/12 09:05	01/26/12 00:23	10.0
Benzo (k) fluoranthene	0.673	J	0.782	0.397	mg/kg dry	\$	01/24/12 09:05	01/26/12 00:23	10.0
Chrysene	1.58		0.782	0.397	mg/kg dry	\$	01/24/12 09:05	01/26/12 00:23	10.0
Dibenz (a,h) anthracene	0.634	J	0.782	0.397	mg/kg dry	¢	01/24/12 09:05	01/26/12 00:23	10.0
Fluoranthene	2.10		0.782	0.397	mg/kg dry	\$	01/24/12 09:05	01/26/12 00:23	10.0
Fluorene	5.15		0.782	0.397	mg/kg dry	ø	01/24/12 09:05	01/26/12 00:23	10.0
Indeno (1,2,3-cd) pyrene	0.513	J	0.782	0.397	mg/kg dry	ø	01/24/12 09:05	01/26/12 00:23	10.0
Naphthalene	12.5		0.782	0.397	mg/kg dry	ø	01/24/12 09:05	01/26/12 00:23	10.0
Phenanthrene	9.59		0.782	0.397	mg/kg dry	¢	01/24/12 09:05	01/26/12 00:23	10.0
Pyrene	3.22		0.782	0.397	mg/kg dry	¢	01/24/12 09:05	01/26/12 00:23	10.0
1-Methylnaphthalene	34.6		0.782	0.397	mg/kg dry	¢	01/24/12 09:05	01/26/12 00:23	10.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	83		18 - 120				01/24/12 09:05	01/26/12 00:23	10.0

Client Sample Results

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

TestAmerica Job ID: NWA3573

Client Sample ID: 518 Laurel Bay Lab Sample ID: NWA3573-03 Date Collected: 01/19/12 12:00 Matrix: Soil Date Received: 01/21/12 08:30 Percent Solids: 85.2 Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D - RE1 (Continued) Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 2-Fluorobiphenyl 49 01/24/12 09:05 01/26/12 00:23 14 - 120 10.0 Nitrobenzene-d5 97 17 - 120 01/24/12 09:05 01/26/12 00:23 10.0 Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D - RE2 Analyte **Result Qualifier** RL MDL Unit Dil Fac D Prepared Analyzed

2-Methylnaphthalene	59.7		3.91	1.98	mg/kg dry	- \	01/24/12 09:05	01/27/12 00:12	50.0
Method: SW-846 - General Ch	emistry Paramete	ers							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
% Dry Solids	85.2		0.500	0.500	%		01/24/12 15:50	01/25/12 08:57	1.00

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B

Lab Sample ID: 12A5222-BLK1 Matrix: Soil

Client Sample ID: Method Blank Prep Type: Total Prep Batch: 12A5222_P

Client Sample ID: Method Blank

Prep Type: Total

Prep Batch: 12A5222 P

Analysis Batch: V001366

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.00110	mg/kg wet		01/24/12 10:16	01/24/12 13:31	1.00
Ethylbenzene	ND		0.00200	0.00110	mg/kg wet		01/24/12 10:16	01/24/12 13:31	1.00
Naphthalene	ND		0.00500	0.00250	mg/kg wet		01/24/12 10:16	01/24/12 13:31	1.00
Toluene	ND		0.00200	0.00110	mg/kg wet		01/24/12 10:16	01/24/12 13:31	1.00
Xylenes, total	ND		0.00500	0.00250	mg/kg wet		01/24/12 10:16	01/24/12 13:31	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4	99		70 - 130				01/24/12 10:16	01/24/12 13:31	1.00

1,2-Dichloroemane-u4	33	10-150	01/24/12 10.10	01/24/12 13.31
Dibromofluoromethane	104	70 - 130	01/24/12 10:16	01/24/12 13:31
Toluene-d8	100	70 - 130	01/24/12 10:16	01/24/12 13:31
4-Bromofluorobenzene	99	70 - 130	01/24/12 10:16	01/24/12 13:31

Lab Sample ID: 12A5222-BLK2 Matrix: Soil Analysis Batch: V001366

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.100	0.0550	mg/kg wet		01/24/12 10:16	01/24/12 14:02	50.0
Ethylbenzene	ND		0.100	0.0550	mg/kg wet		01/24/12 10:16	01/24/12 14:02	50.0
Naphthalene	ND		0.250	0.125	mg/kg wet		01/24/12 10:16	01/24/12 14:02	50.0
Toluene	ND		0.100	0.0550	mg/kg wet		01/24/12 10:16	01/24/12 14:02	50.0
Xylenes, total	ND		0.250	0.125	mg/kg wet		01/24/12 10:16	01/24/12 14:02	50.0

Blank				
Qualifier	Limits	Prepared	Analyzed	Dil Fac
	70 - 130	01/24/12 10:16	01/24/12 14:02	50.0
	70 - 130	01/24/12 10:16	01/24/12 14:02	50.0
	70 - 130	01/24/12 10:16	01/24/12 14:02	50.0
	70 - 130	01/24/12 10:16	01/24/12 14:02	50.0
	Blank Qualifier	Qualifier Limits 70 - 130 70 - 130 70 - 130 70 - 130	Qualifier Limits Prepared 70 - 130 01/24/12 10:16 70 - 130 01/24/12 10:16 70 - 130 01/24/12 10:16 70 - 130 01/24/12 10:16	Qualifier Limits Prepared Analyzed 70 - 130 01/24/12 10:16 01/24/12 14:02 70 - 130 01/24/12 10:16 01/24/12 14:02 70 - 130 01/24/12 10:16 01/24/12 14:02 70 - 130 01/24/12 10:16 01/24/12 14:02

Lab Sample ID: 12A5222-BS1 Matrix: Soil

Analysis Batch: V001366

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	50.0	54.8		ug/kg	-	110	75 - 127
Ethylbenzene	50.0	57.1		ug/kg		114	80 - 134
Naphthalene	50.0	56.7		ug/kg		113	69 - 150
Toluene	50.0	55.7		ug/kg		111	80 - 132
Xylenes, total	150	171		ug/kg		114	80 - 137

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	99		70 - 130
Dibromofluoromethane	103		70 - 130
Toluene-d8	101		70 - 130
4-Bromofluorobenzene	100		70 - 130

Client Sample ID: Lab Control Sample

Prep Type: Total Prep Batch: 12A5222 P

1.00

1.00

1.00

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 12A5222-MS1 Matrix: Soil

Client Sample ID: 518 Laurel Bay Prep Type: Total Prep Batch: 1245222 P

Analysis Batch: V001366									Prep Batch: 12A5	5222_F
	Sample	Sample	Spike	Matrix Spike	Matrix Spi	ke			%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		1.39	1.75		mg/kg dry	¢.	126	31 - 143	_
Ethylbenzene	0.843		1.39	2.64		mg/kg dry	Ø	129	23 - 161	
Naphthalene	9.02		1.39	10.5		mg/kg dry	亞	106	10 - 176	
Toluene	ND		1.39	1.79		mg/kg dry	ø	129	30 - 155	
Xylenes, total	0.958		4.17	6.31		mg/kg dry	Ø	128	25 - 162	

	Matrix Spike	Matrix Spike	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	94		70 - 130
Dibromofluoromethane	97		70 - 130
Toluene-d8	112		70 - 130
4-Bromofluorobenzene	117		70 - 130

Lab Sample ID: 12A5222-MSD1 Matrix: Soil Analysis Batch: V001366

	Sample	Sample	Spike	Matrix Spike Dup	Matrix Spi	ke Duş			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND	-	1.39	1.53		mg/kg dry	Q.	110	31 - 143	13	50
Ethylbenzene	0.843		1.39	2.28		mg/kg dry	¢	103	23 - 161	15	50
Naphthalene	9.02		1.39	9.96		mg/kg dry	\$2	67	10 - 176	5	50
Toluene	ND		1.39	1.48		mg/kg dry	ø	107	30 - 155	19	50
Xylenes, total	0.958		4.17	5.36		mg/kg dry	325	106	25 - 162	16	50

	Matrix Spike Dup	Matrix Spike Dup			
Surrogate	%Recovery	Qualifier	Limits		
1,2-Dichloroethane-d4	94		70 - 130		
Dibromofluoromethane	98		70 - 130		
Toluene-d8	108		70 - 130		
4-Bromofluorobenzene	115		70 - 130		

Lab Sample ID: 12A6446-BLK1 Matrix: Soil Analysis Batch: V001371

Blank	Blank							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.00200	0.00110	mg/kg wet		01/25/12 10:25	01/25/12 12:30	1.00
ND		0.00200	0.00110	mg/kg wet		01/25/12 10:25	01/25/12 12:30	1.00
ND		0.00500	0.00250	mg/kg wet		01/25/12 10:25	01/25/12 12:30	1.00
ND		0.00200	0.00110	mg/kg wet		01/25/12 10:25	01/25/12 12:30	1.00
ND		0.00500	0.00250	mg/kg wet		01/25/12 10:25	01/25/12 12:30	1.00
Blank	Blank							
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
96	-	70 - 130				01/25/12 10:25	01/25/12 12:30	1.00
96		70 - 130				01/25/12 10:25	01/25/12 12:30	1.00
102		70 - 130				01/25/12 10:25	01/25/12 12:30	1.00
103		70 - 130				01/25/12 10:25	01/25/12 12:30	1.00
	Result ND ND ND ND Blank %Recovery 96 96 102	ND ND ND Blank Blank %Recovery Qualifier 96 96 102	Result Qualifier RL ND 0.00200 ND 0.00200 ND 0.00500 ND 0.00200 ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 Blank Blank %Recovery Qualifier Limits 96 70 - 130 102 70 - 130	Result Qualifier RL MDL ND 0.00200 0.00110 ND 0.00200 0.00110 ND 0.00500 0.00250 ND 0.00200 0.00110 ND 0.00200 0.00110 ND 0.00200 0.00250 ND 0.00500 0.00250 Blank Blank 102 %Recovery Qualifier Limits 96 70 - 130 102 102 70 - 130 102	Result Qualifier RL MDL Unit ND 0.00200 0.00110 mg/kg wet ND 0.00200 0.00110 mg/kg wet ND 0.00500 0.00250 mg/kg wet ND 0.00200 0.00110 mg/kg wet ND 0.00500 0.00250 mg/kg wet Blank Blank Imits Imits Imits 96 70-130 70-130 Imits Imits 102 70-130 Imits Imits Imits	Result Qualifier RL MDL Unit D ND 0.00200 0.00110 mg/kg wet mg/kg wet	Result Qualifier RL MDL Unit D Prepared ND 0.00200 0.00110 mg/kg wet 01/25/12 10:25 ND 0.00200 0.00110 mg/kg wet 01/25/12 10:25 ND 0.00500 0.00250 mg/kg wet 01/25/12 10:25 ND 0.00200 0.00110 mg/kg wet 01/25/12 10:25 ND 0.00200 0.00110 mg/kg wet 01/25/12 10:25 ND 0.00500 0.00250 mg/kg wet 01/25/12 10:25 ND 0.00500 0.00250 mg/kg wet 01/25/12 10:25 Blank Blank Blank Prepared 01/25/12 10:25 96 70 - 130 - Frepared 96 70 - 130 01/25/12 10:25 01/25/12 10:25 102 70 - 130 - 01/25/12 10:25	Result Qualifier RL MDL Unit P Prepared Analyzed ND 0.00200 0.00110 mg/kg wet 01/25/12 10:25 01/25/12 12:30 ND 0.00200 0.00110 mg/kg wet 01/25/12 10:25 01/25/12 12:30 ND 0.00500 0.00250 mg/kg wet 01/25/12 10:25 01/25/12 12:30 ND 0.00200 0.00110 mg/kg wet 01/25/12 10:25 01/25/12 12:30 ND 0.00200 0.00110 mg/kg wet 01/25/12 10:25 01/25/12 12:30 ND 0.00500 0.00250 mg/kg wet 01/25/12 10:25 01/25/12 12:30 ND 0.00500 0.00250 mg/kg wet 01/25/12 10:25 01/25/12 12:30 Blank Blank Blank Blank Blank Blank Prepared Analyzed 96 70 - 130 - - Prepared 01/25/12 12:30 96 70 - 130 - - 01/25/12 10:25 01/25/12 12:30 96 70

Client Sample ID: 518 Laurel Bay Prep Type: Total Prep Batch: 12A5222 P

Client Sample ID: Method Blank

Prep Type: Total

Prep Batch: 12A6446_P

TestAmerica Nashville 2/6/2012	

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 12A6446-BLK2 Matrix: Soil Analysis Batch: V001371								mple ID: Metho Prep Typ Prep Batch: 12A	e: Total
Analyte		Blank Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	Quaimer	0.100	0.0550	20015		01/25/12 10:25	01/25/12 13:01	50.0
Ethylbenzene	ND		0.100	0.0550			01/25/12 10:25	01/25/12 13:01	50.0
Naphthalene	ND		0.250	0.125	mg/kg wet		01/25/12 10:25	01/25/12 13:01	50.0
Toluene	ND		0.100	0.0550	mg/kg wet		01/25/12 10:25	01/25/12 13:01	50.0
Xylenes, total	ND		0.250	0.125	mg/kg wet		01/25/12 10:25	01/25/12 13:01	50.0
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1 2-Dichloroethane-d4	95		70 - 130				01/25/12 10:25	01/25/12 13:01	50.0

1,2-Dichloroethane-d4	95	70 - 130	01/25/12 10:25	01/25/12 13:01	50.0
Dibromofluoromethane	96	70 - 130	01/25/12 10:25	01/25/12 13:01	50.0
Toluene-d8	103	70 - 130	01/25/12 10:25	01/25/12 13:01	50.0
4-Bromofluorobenzene	101	70 - 130	01/25/12 10:25	01/25/12 13:01	50.0

Lab Sample ID: 12A6446-BS1 Matrix: Soil Analysis Batch: V001371

LCS LCS Spike %Rec. **Result Qualifier** Analyte Added Unit D %Rec Limits 75 - 127 Benzene 50.0 53.8 ug/kg 108 Ethylbenzene 50.0 56.9 ug/kg 114 80 - 134 Naphthalene 50.0 60.6 121 69 - 150 ug/kg Toluene 50.0 57.2 ug/kg 114 80 - 132 150 170 80 - 137 Xylenes, total ug/kg 113

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4	97		70 - 130
Dibromofluoromethane	96		70 - 130
Toluene-d8	102		70 - 130
4-Bromofluorobenzene	101		70 - 130

Lab Sample ID: 12A6446-MS1 Matrix: Soil

	Sample	Sample	Spike	Matrix Spike	Matrix Spil	ke			%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		0.0450	0.0478	_	mg/kg wet	-	106	31 - 143	_
Ethylbenzene	ND		0.0450	0.0478		mg/kg wet		106	23 - 161	
Naphthalene	ND		0.0450	0.0360		mg/kg wet		80	10 - 176	
Toluene	ND		0.0450	0.0487		mg/kg wet		108	30 - 155	
Xylenes, total	ND		0.135	0.145		mg/kg wet		107	25 - 162	

Surrogate	•	Matrix Spike Qualifier	Limits
1,2-Dichloroethane-d4	96		70 - 130
Dibromofluoromethane	94		70 - 130
Toluene-d8	102		70 - 130
4-Bromofluorobenzene	103		70 - 130

Client Sample ID: Lab Control Sample Prep Type: Total

Prep Batch: 12A6446_P

Client Sample ID: Matrix Spike	

Prep Type: Total

ren Batch: 12AGAAG

Method: SW846 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 12A6446-M	ISD1					Clien	t Sar	nple ID:	Matrix Sp	ike Dup	olicate
Matrix: Soil									Pre	p Type:	: Tota
Analysis Batch: V001371								1	Prep Batch	1: 12A6	446_F
and the second second	Sample	Sample	Spike	Aatrix Spike Dup	Matrix Spi	ke Duş			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Benzene	ND		0.0420	0.0435		mg/kg wet		104	31 - 143	10	50
Ethylbenzene	ND		0.0420	0.0423		mg/kg wet		101	23 - 161	12	50
Naphthalene	ND		0.0420	0.0316		mg/kg wet		75	10 - 176	13	50
Toluene	ND		0.0420	0.0428		mg/kg wet		102	30 - 155	13	50
Xylenes, total	ND		0.126	0.127		mg/kg wet		101	25 - 162	13	50
	Matrix Spike Dup	Matrix Spike	Dup								
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4	96		70 - 130								
Dibromofluoromethane	96		70 - 130								
Toluene-d8	100		70 - 130								
4-Bromofluorobenzene	104		70 - 130								

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D

Lab Sample ID: 12A5304-BLK1 Matrix: Soil

Analysis Batch: 12A5304

Matrix: Soil

Client Sample ID: Method Blank Prep Type: Total Prep Batch: 12A5304_P

Analysis Batch. 12A0004	Blank	Blank						Tep Daten. 12P	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0670	0.0340	mg/kg wet		01/24/12 09:05	01/24/12 21:51	1.00
Acenaphthylene	ND		0.0670	0.0340	mg/kg wet		01/24/12 09:05	01/24/12 21:51	1.00
Anthracene	ND		0.0670	0.0340	mg/kg wet		01/24/12 09:05	01/24/12 21:51	1.00
Benzo (a) anthracene	ND		0.0670	0.0340	mg/kg wet		01/24/12 09:05	01/24/12 21:51	1.00
Benzo (a) pyrene	ND		0.0670	0.0340	mg/kg wet		01/24/12 09:05	01/24/12 21:51	1.00
Benzo (b) fluoranthene	ND		0.0670	0.0340	mg/kg wet		01/24/12 09:05	01/24/12 21:51	1.00
Benzo (g,h,i) perylene	ND		0.0670	0.0340	mg/kg wet		01/24/12 09:05	01/24/12 21:51	1.00
Benzo (k) fluoranthene	ND		0.0670	0.0340	mg/kg wet		01/24/12 09:05	01/24/12 21:51	1.00
Chrysene	ND		0.0670	0.0340	mg/kg wet		01/24/12 09:05	01/24/12 21:51	1.00
Dibenz (a,h) anthracene	ND		0.0670	0.0340	mg/kg wet		01/24/12 09:05	01/24/12 21:51	1.00
Fluoranthene	ND		0.0670	0.0340	mg/kg wet		01/24/12 09:05	01/24/12 21:51	1.00
Fluorene	ND		0.0670	0.0340	mg/kg wet		01/24/12 09:05	01/24/12 21:51	1.00
Indeno (1,2,3-cd) pyrene	ND		0.0670	0.0340	mg/kg wet		01/24/12 09:05	01/24/12 21:51	1.00
Naphthalene	ND		0.0670	0.0340	mg/kg wet		01/24/12 09:05	01/24/12 21:51	1.00
Phenanthrene	ND		0.0670	0.0340	mg/kg wet		01/24/12 09:05	01/24/12 21:51	1.00
Pyrene	ND		0.0670	0.0340	mg/kg wet		01/24/12 09:05	01/24/12 21:51	1.00
1-Methylnaphthalene	ND		0.0670	0.0340	mg/kg wet		01/24/12 09:05	01/24/12 21:51	1.00
2-Methylnaphthalene	ND		0.0670	0.0340	mg/kg wet		01/24/12 09:05	01/24/12 21:51	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	83		18 - 120				01/24/12 09:05	01/24/12 21:51	1.00
2-Fluorobiphenyl	57		14 - 120				01/24/12 09:05	01/24/12 21:51	1.00
Nitrobenzene-d5	56		17 - 120				01/24/12 09:05	01/24/12 21:51	1.00

Lab Sample ID: 12A5304-BS1

Analysis Batch: 12A5304						13	Prep Batch: 12A5304_P
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	1.67	1.20		mg/kg wet		72	36 - 120

Prep Type: Total

Client Sample ID: Lab Control Sample

Page 12 of 21

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D (Continued)

Lab Sample ID: 12A5304-BS1				Cli	ent S	Sample	ID: Lab Control Sample
Matrix: Soil							Prep Type: Total
Analysis Batch: 12A5304							Prep Batch: 12A5304_P
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthylene	1.67	1.08		mg/kg wet		65	38 - 120
Anthracene	1.67	1.25		mg/kg wet		75	46 - 124
Benzo (a) anthracene	1.67	1.26		mg/kg wet		75	45 - 120
Benzo (a) pyrene	1.67	1.27		mg/kg wet		76	45 - 120
Benzo (b) fluoranthene	1.67	1.18		mg/kg wet		71	42 - 120
Benzo (g,h,i) perylene	1.67	1.24		mg/kg wet		74	38 - 120
Benzo (k) fluoranthene	1.67	1.13		mg/kg wet		68	42 - 120
Chrysene	1.67	1.23		mg/kg wet		74	43 - 120
Dibenz (a,h) anthracene	1.67	1.07		mg/kg wet		64	32 - 128
Fluoranthene	1.67	1.25		mg/kg wet		75	46 - 120
Fluorene	1.67	1.25		mg/kg wet		75	42 - 120
Indeno (1,2,3-cd) pyrene	1.67	1.15		mg/kg wet		69	41 - 121
Naphthalene	1.67	1.29		mg/kg wet		78	32 - 120
Phenanthrene	1.67	1.23		mg/kg wet		74	45 - 120
Pyrene	1.67	1.22		mg/kg wet		73	43 - 120
1-Methylnaphthalene	1.67	0.938		mg/kg wet		56	32 - 120
2-Methylnaphthalene	1.67	1.18		mg/kg wet		71	28 - 120

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Terphenyl-d14	74		18 - 120
2-Fluorobiphenyl	60		14 - 120
Nitrobenzene-d5	60		17 - 120

Lab Sample ID: 12A5304-MS1 Matrix: Soil Analysis Batch: 12A5304

Terphenyl-d14

Client	Sampl	e ID:	13	49	Car	din	al
		Pre	ep	Ту	pe:	Tot	al
	Prep	Batc	h:	12	A53	04	P

	Sample	Sample	Spike	Matrix Spike	Matrix Spi	ke			%Rec.	-
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	ND		1.89	1.20		mg/kg dry	Ø	63	19 - 120	
Acenaphthylene	ND		1.89	1.08		mg/kg dry	\$	57	25 - 120	
Anthracene	ND		1.89	1.24		mg/kg dry	¢	66	28 - 125	
Benzo (a) anthracene	ND		1.89	1.26		mg/kg dry	Q.	67	23 - 120	
Benzo (a) pyrene	ND		1.89	1.27		mg/kg dry	¢	67	15 - 128	
Benzo (b) fluoranthene	ND		1.89	1.31		mg/kg dry	¢	69	12 - 133	
Benzo (g,h,i) perylene	ND		1.89	1.22		mg/kg dry	¢	65	22 - 120	
Benzo (k) fluoranthene	ND		1.89	1.05		mg/kg dry	¢	56	28 - 120	
Chrysene	ND		1.89	1.21		mg/kg dry	\$	64	20 - 120	
Dibenz (a,h) anthracene	ND		1.89	1.08		mg/kg dry	¢	57	12 - 128	
Fluoranthene	ND		1.89	1.30		mg/kg dry	¢	69	10 - 143	
Fluorene	ND		1.89	1.24		mg/kg dry	ø	66	20 - 120	
Indeno (1,2,3-cd) pyrene	ND		1.89	1.15		mg/kg dry	\$	61	22 - 121	
Naphthalene	ND		1.89	1.32		mg/kg dry	ø	70	10 - 120	
Phenanthrene	ND		1.89	1.25		mg/kg dry	\$	66	21 - 122	
Pyrene	ND		1.89	1.19		mg/kg dry	\$	63	20 - 123	
1-Methylnaphthalene	ND		1.89	0.935		mg/kg dry	\$	50	10 - 120	
2-Methylnaphthalene	ND		1.89	1.17		mg/kg dry	ø	62	13 - 120	
	Matrix Spike	Matrix Spike								
Surrogate	%Recovery	Qualifier	Limits							

```
%Recovery Qualifier
                        Limits
       64
                        18-120
```

TestAmerica Nashville 2/6/2012

Client Sample ID: 1349 Cardinal

Client Sample ID: 1349 Cardinal

Prep Type: Total

Prep Type: Total

Prep Batch: 12A5304_P

Method: SW846 8270D - Polyaromatic Hydrocarbons by EPA 8270D (Continued)

Lab Sample ID: 12A5304-MS1 Matrix: Soil Analysis Batch: 12A5304

	Matrix Spike	Matrix Spike	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	51		14 - 120
Nitrobenzene-d5	50		17 - 120

Lab Sample ID: 12A5304-MSD1 Matrix: Soil

Analysis Batch: 1245204

Analysis Batch: 12A5304									Prep Batch	: 12A5	304 P
Contraction of the second second	Sample	Sample	Spike	Matrix Spike Dup	Matrix Spike	Duţ			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	ND		1.91	1.32		mg/kg dry	₩.	69	19 - 120	10	50
Acenaphthylene	ND		1.91	1.22		mg/kg dry	¢	64	25 - 120	12	50
Anthracene	ND		1.91	1.38		mg/kg dry	\$	72	28 - 125	11	49
Benzo (a) anthracene	ND		1.91	1.38		mg/kg dry	\$	72	23 - 120	9	50
Benzo (a) pyrene	ND		1.91	1.39		mg/kg dry	¢	73	15 - 128	10	50
Benzo (b) fluoranthene	ND		1.91	1.46		mg/kg dry	\$	76	12 - 133	11	50
Benzo (g,h,i) perylene	ND		1.91	1.34		mg/kg dry	\$	70	22 - 120	9	50
Benzo (k) fluoranthene	ND		1.91	1.17		mg/kg dry	\$	61	28 - 120	10	45
Chrysene	ND		1.91	1.33		mg/kg dry	\$	69	20 - 120	9	49
Dibenz (a,h) anthracene	ND		1.91	1.20		mg/kg dry	¢	63	12 - 128	11	50
Fluoranthene	ND		1.91	1.43		mg/kg dry	¢	75	10 - 143	10	50
Fluorene	ND		1.91	1.41		mg/kg dry	\$	74	20 - 120	13	50
Indeno (1,2,3-cd) pyrene	ND		1.91	1.26		mg/kg dry	¢	66	22 - 121	9	50
Naphthalene	ND		1.91	1.49		mg/kg dry	\$	78	10 - 120	13	50
Phenanthrene	ND		1.91	1.37		mg/kg dry	¢	72	21 - 122	9	50
Pyrene	ND		1.91	1.32		mg/kg dry	\$	69	20 - 123	10	50
1-Methylnaphthalene	ND		1.91	1.04		mg/kg dry	\$	54	10 - 120	11	50
2-Methylnaphthalene	ND		1.91	1.34		mg/kg dry	¢	70	13 - 120	13	50

Surrogate	%Recovery	Qualifier	Limits
Terphenyl-d14	68		18 - 120
2-Fluorobiphenyl	56		14 - 120
Nitrobenzene-d5	57		17 - 120

Method: SW-846 - General Chemistry Parameters

Lab Sample ID: 12A5758-DUP1 Matrix: Soil							Client Sample ID: Dup Prep Type	100 C
Analysis Batch: 12A5758							Prep Batch: 12A5	758_P
	Sample	Sample	Duplicate	Duplicate				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
% Dry Solids	81.4		80.8		%		0.8	20

QC Association Summary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

GCMS Volatiles

Analy	sis	Batch:	V001366
-------	-----	--------	---------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12A5222-BLK1	Method Blank	Total	Soil	SW846 8260B	12A5222_I
12A5222-BLK2	Method Blank	Total	Soil	SW846 8260B	12A5222_F
12A5222-BS1	Lab Control Sample	Total	Soil	SW846 8260B	12A5222_
12A5222-MS1	518 Laurel Bay	Total	Soil	SW846 8260B	12A5222_I
12A5222-MSD1	518 Laurel Bay	Total	Soil	SW846 8260B	12A5222_I
NWA3573-01	1349 Cardinal	Total	Soil	SW846 8260B	12A5222_I
NWA3573-02	334 Ash	Total	Soil	SW846 8260B	12A5222_I
NWA3573-03	518 Laurel Bay	Total	Soil	SW846 8260B	12A5222_
NWA3573-03 - RE1	518 Laurel Bay	Total	Soil	SW846 8260B	12A5222_I
nalysis Batch: V001	371				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12A6446-BLK1	Method Blank	Total	Soil	SW846 8260B	12A6446_
12A6446-BLK2	Method Blank	Total	Soil	SW846 8260B	12A6446_
12A6446-BS1	Lab Control Sample	Total	Soil	SW846 8260B	12A6446_
12A6446-MS1	Matrix Spike	Total	Soil	SW846 8260B	12A6446_
12A6446-MSD1	Matrix Spike Duplicate	Total	Soil	SW846 8260B	12A6446_
NWA3573-03 - RE2	518 Laurel Bay	Total	Soil	SW846 8260B	12A6446_I
rep Batch: 12A5222	P				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
12A5222-BLK1	Method Blank	Total	Soil	EPA 5035	
12A5222-BLK2	Method Blank	Total	Soil	EPA 5035	
12A5222-BS1	Lab Control Sample	Total	Soil	EPA 5035	
12A5222-MS1	518 Laurel Bay	Total	Soil	EPA 5035	
12A5222-MSD1	518 Laurel Bay	Total	Soil	EPA 5035	
NWA3573-01	1349 Cardinal	Total	Soil	EPA 5035	
NWA3573-02	334 Ash	Total	Soil	EPA 5035	
NWA3573-03	518 Laurel Bay	Total	Soil	EPA 5035	
NWA3573-03 - RE1	518 Laurel Bay	Total	Soil	EPA 5035	
rep Batch: 12A6446	P				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12A6446-BLK1	Method Blank	Total	Soil	EPA 5035	
12A6446-BLK2	Method Blank	Total	Soil	EPA 5035	
12A6446-BS1	Lab Control Sample	Total	Soil	EPA 5035	
12A6446-MS1	Matrix Spike	Total	Soil	EPA 5035	
12A6446-MSD1	Matrix Spike Duplicate	Total	Soil	EPA 5035	
NWA3573-03 - RE2	518 Laurel Bay	Total	Soil	EPA 5035	
here .					

GCMS Semivolatiles

Analysis Batch: 12A5304

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12A5304-BLK1	Method Blank	Total	Soil	SW846 8270D	12A5304_P
12A5304-BS1	Lab Control Sample	Total	Soil	SW846 8270D	12A5304_P
12A5304-MS1	1349 Cardinal	Total	Soil	SW846 8270D	12A5304_P
12A5304-MSD1	1349 Cardinal	Total	Soil	SW846 8270D	12A5304_P
NWA3573-01	1349 Cardinal	Total	Soil	SW846 8270D	12A5304_P
NWA3573-02	334 Ash	Total	Soil	SW846 8270D	12A5304_P
NWA3573-03 - RE2	518 Laurel Bay	Total	Soil	SW846 8270D	12A5304_P

QC Association Summary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

GCMS Semivolatiles (Continued)

Analysis Batch: V001286

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
NWA3573-03 - RE1	518 Laurel Bay	Total	Soil	SW846 8270D	12A5304_P

Prep Batch: 12A5304_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
12A5304-BLK1	Method Blank	Total	Soil	EPA 3550C	
12A5304-BS1	Lab Control Sample	Total	Soil	EPA 3550C	
12A5304-MS1	1349 Cardinal	Total	Soil	EPA 3550C	
12A5304-MSD1	1349 Cardinal	Total	Soil	EPA 3550C	
NWA3573-01	1349 Cardinal	Total	Soil	EPA 3550C	
NWA3573-02	334 Ash	Total	Soil	EPA 3550C	
NWA3573-03 - RE1	518 Laurel Bay	Total	Soil	EPA 3550C	
NWA3573-03 - RE2	518 Laurel Bay	Total	Soil	EPA 3550C	

Extractions

Analysis Batch: 12A5758

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12A5758-DUP1	Duplicate	Total	Soil	SW-846	12A5758_P
NWA3573-01	1349 Cardinal	Total	Soil	SW-846	12A5758_P
NWA3573-02	334 Ash	Total	Soil	SW-846	12A5758_P
NWA3573-03	518 Laurel Bay	Total	Soil	SW-846	12A5758_P

Prep Batch: 12A5758_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12A5758-DUP1	Duplicate	Total	Soil	% Solids	
NWA3573-01	1349 Cardinal	Total	Soil	% Solids	
NWA3573-02	334 Ash	Total	Soil	% Solids	
NWA3573-03	518 Laurel Bay	Total	Soil	% Solids	

ate Collected	lient Sample ID: 1349 Cardinal Lab ate Collected: 01/16/12 15:00 Lab ate Received: 01/21/12 08:30 Lab							D: NWA3573-0 Matrix: So Percent Solids: 8
Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total	Prep	EPA 5035		1.13	12A5222_P	01/16/12 15:00	AAN	TAL NSH
Total	Analysis	SW846 8260B		1.00	V001366	01/24/12 20:18	ККК Н	TAL NSH
Total	Prep	EPA 3550C		0.989	12A5304_P	01/24/12 09:05	MWT	TAL NSH
Total	Analysis	SW846 8270D		1.00	12A5304	01/24/12 22:51	KJP	TAL NSH
Total	Prep	% Solids		1.00	12A5758_P	01/24/12 15:50	RRS	TAL NSH
Total	Analysis	SW-846		1.00	12A5758	01/25/12 08:57	RRS	TAL NSH

Client Sample ID: 334 Ash Date Collected: 01/18/12 16:15 Date Received: 01/21/12 08:30

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total Prep EPA 5035 12A5222_P 0.936 01/18/12 16:15 AAN TAL NSH SW846 8260B Total Analysis 1.00 V001366 01/24/12 20:49 KKK H TAL NSH Total Prep EPA 3550C 0.985 12A5304_P 01/24/12 09:05 MWT TAL NSH Total SW846 8270D Analysis 1.00 12A5304 01/24/12 23:12 KJP TAL NSH Total Prep % Solids 1.00 12A5758_P 01/24/12 15:50 RRS TAL NSH Total Analysis SW-846 1.00 12A5758 01/25/12 08:57 RRS TAL NSH

Client Sample ID: 518 Laurel Bay Date Collected: 01/19/12 12:00 Date Received: 01/21/12 08:30

Lab Sample ID: NWA3573-03

Lab Sample ID: NWA3573-02

Matrix: Soil Percent Solids: 85.2

Matrix: Soil

Percent Solids: 85.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	EPA 5035		0.912	12A5222_P	01/19/12 12:00	AAN	TAL NSH
Total	Analysis	SW846 8260B		1.00	V001366	01/24/12 21:20	ккк н	TAL NSH
Total	Prep	EPA 5035	RE1	0.474	12A5222_P	01/19/12 12:00	AAN	TAL NSH
Total	Analysis	SW846 8260B	RE1	50.0	V001366	01/24/12 21:52	ККК Н	TAL NSH
Total	Prep	EPA 5035	RE2	0.474	12A6446_P	01/19/12 12:00	AAN	TAL NSH
Total	Analysis	SW846 8260B	RE2	500	V001371	01/25/12 14:35	ккк н	TAL NSH
Total	Prep	EPA 3550C	RE1	0.995	12A5304_P	01/24/12 09:05	MWT	TAL NSH
Total	Analysis	SW846 8270D	RE1	10.0	V001286	01/26/12 00:23	KJP	TAL NSH
Total	Prep	EPA 3550C	RE2	0.995	12A5304_P	01/24/12 09:05	MWT	TAL NSH
Total	Analysis	SW846 8270D	RE2	50.0	12A5304	01/27/12 00:12	KJP	TAL NSH
Total	Prep	% Solids		1.00	12A5758_P	01/24/12 15:50	RRS	TAL NSH
Total	Analysis	SW-846		1.00	12A5758	01/25/12 08:57	RRS	TAL NSH

Laboratory References:

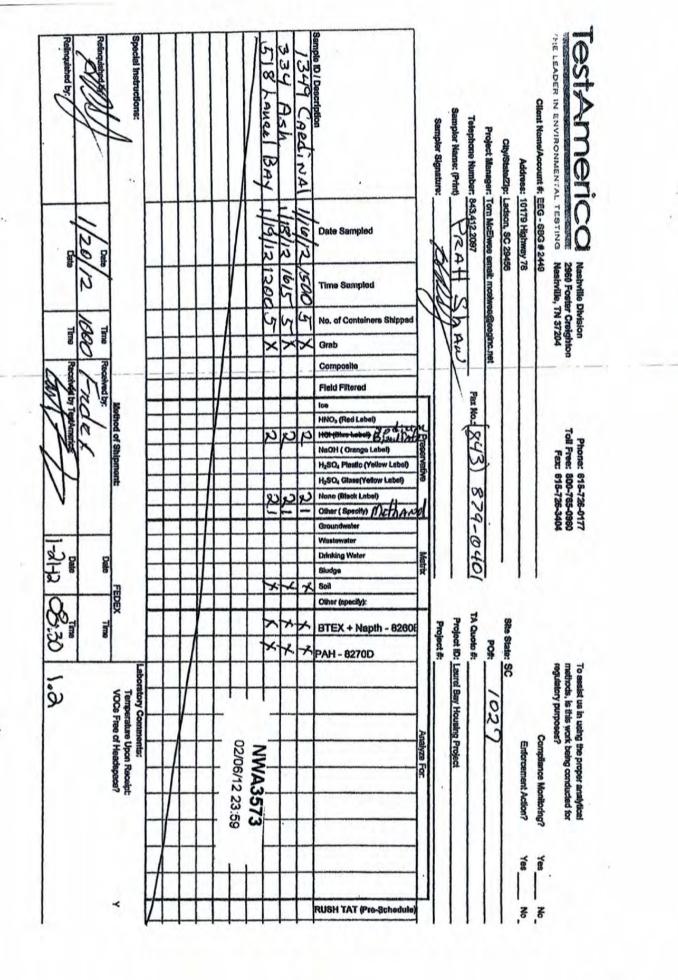
TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Road, Nashville, TN 37204, TEL 800-765-0980

Method	Method Description	Protocol	Laboratory
SW-846	General Chemistry Parameters		TAL NSH
SW846 8260B	Volatile Organic Compounds by EPA Method 8260B		TAL NSH
SW846 8270D	Polyaromatic Hydrocarbons by EPA 8270D		TAL NSH

Protocol References:

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Road, Nashville, TN 37204, TEL 800-765-0980


Certification Summary

Client: EEG - Small Business Group, Inc. (2449) Project/Site: [none]

K

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Nashville		ACIL		393
TestAmerica Nashville	A2LA	ISO/IEC 17025		0453.07
TestAmerica Nashville	A2LA	WY UST		453.07
TestAmerica Nashville	Alabama	State Program	4	41150
TestAmerica Nashville	Alaska	Alaska UST	10	UST-087
TestAmerica Nashville	Arizona	State Program	9	AZ0473
TestAmerica Nashville	Arkansas	State Program	6	88-0737
estAmerica Nashville	California	NELAC	9	1168CA
estAmerica Nashville	Canada (CALA)	Canada (CALA)		3744
estAmerica Nashville	Colorado	State Program	8	N/A
estAmerica Nashville	Connecticut	State Program	1	PH-0220
estAmerica Nashville	Florida	NELAC	4	E87358
estAmerica Nashville	Illinois	NELAC	5	200010
estAmerica Nashville	Iowa	State Program	7	131
estAmerica Nashville	Kansas	NELAC	7	E-10229
estAmerica Nashville	Kentucky	Kentucky UST	4	19
estAmerica Nashville	Kentucky	State Program	4	90038
estAmerica Nashville	Louisiana	NELAC	6	30613
estAmerica Nashville	Louisiana	NELAC	6	LA110014
estAmerica Nashville	Maryland	State Program	3	316
estAmerica Nashville	Massachusetts	State Program	1	M-TN032
estAmerica Nashville	Mississippi	State Program	4	N/A
estAmerica Nashville	Montana	MT DEQ UST	8	NA
estAmerica Nashville	New Hampshire	NELAC	1	2963
estAmerica Nashville	New Jersey	NELAC	2	TN965
estAmerica Nashville	New York	NELAC	2	11342
estAmerica Nashville	North Carolina	North Carolina DENR	4	387
estAmerica Nashville	North Dakota	State Program	8	R-146
estAmerica Nashville	Ohio	OVAP	5	CL0033
estAmerica Nashville	Oklahoma	State Program	6	9412
estAmerica Nashville	Oregon	NELAC	10	TN200001
estAmerica Nashville	Pennsylvania	NELAC	3	68-00585
estAmerica Nashville	Rhode Island	State Program	1	LAO00268
estAmerica Nashville	South Carolina	State Program	4	84009
estAmerica Nashville	South Carolina	State Program	4	84009
estAmerica Nashville	Tennessee	State Program	4	2008
estAmerica Nashville	Texas	NELAC	6	T104704077-09-TX
estAmerica Nashville	USDA	USDA		S-48469
estAmerica Nashville	Utah	NELAC	8	TAN
estAmerica Nashville	Virginia	NELAC Secondary AB	3	460152
FestAmerica Nashville	Virginia	State Program	3	00323
FestAmerica Nashville	Washington	State Program	10	C789
FestAmerica Nashville	West Virginia	West Virginia DEP	3	219
TestAmerica Nashville	Wisconsin	State Program	5	998020430

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

E

ATTACHMENT A

NON-HAZARDOUS MANIFEST	tor's US EPA ID I	No. Ma	anifest Doc I	No.	2. Page 1	2.3.2.1			
3. Generator's Mailing Address: MCAS, BEAUFORT LAUREL BAY HOUSING	Generato	or's Site Address (If d	ifferent than m	ailing):	Descentes.	st Number MNA B. State (00316 Generator's	and the second	
BEAUFORT, SC 29907 4. Generator's Phone 843-228-6461							rarson i		
5. Transporter 1 Company Name EEG, INC.	6.	US EPA II) Number	1. A.		ransporter's ll orter's Phone	A CARRY	79-041	1
7. Transporter 2 Company Name	8.	US EPA IE) Number		E. State T	ransporter's II prter's Phone		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
9. Designated Facility Name and Site Address HICKORY HILL LANDFILL 2621 LOW COUNTRY ROAD RIDGELAND, SC 29936	10). US EPA	D Number		G. State F	1-1-2	843-9	87-464	3
11. Description of Waste Materials			12. Cor No.	tainers Type	13. Total Quantity	14. Unit Wt./Vol.	I. Mi	isc. Commen	nts
. HEATING OIL TANKS FILLED WITH SAN	ND		110.	type	quantity				
WM Profile # 1026	555SC	and a second				and and	- 2 - 1		
WM Profile #							A CARLON		
WM Profile #									
L.			- NM	1750	and the second	S.A.		er anne	3
WM Profile # . Additional Descriptions for Materials Listed A	bove		K. Dispos	al Location	1. 3. 1924		1.1		
			Cell Grid				Level		
5. Special Handling Instructions and Additional In	1,3)5	18 LANA	-21	3A.1	7) 31	DIASP DCm	dial	131	TF
Purchase Order #	5/3	EMERGENCY CON	NTACT / PHO	DNE NO.:	11-	Fire	51/0 M		
6. GENERATOR'S CERTIFICATE: hereby certify that the above-described material			Contraction of the second s				ive been ful	ly and	
rinted Name Timothy WhA	ley	Signature "On behal		noth	incable regul	laly	Month	Day 29	Ye
7. Transporter 1 Acknowledgement of Receipt of Printed Name		Signature	Ral	J		0	Month	Day	Ye
8. Transporter 2 Acknowledgement of Receipt of Printed Name	and the second second second	Signature		ance.			Month	Day	Ye
and the second second		Se ave	Sec. Br				1.13		
 Certificate of Final Treatment/Disposal certify, on behalf of the above listed treatment fa pplicable laws, regulations, permits and licenses 			dge, the ab	ove-describ	ed waste w	as managed ir	compliance	e with all	
0. Facility Owner or Operator: Certification of re	ceipt of non-ha	zardous materials co	overed by th	is manifest.		Base -	Menth	Driv	
Printed Name		Signature	(n	00		Month	Day	Yea

Appendix C Laboratory Analytical Report - Initial Groundwater

Volatile	Organic	Compounds	by	GC/MS
----------	---------	-----------	----	-------

Client: AECOM - Resolut Description: BEALB518TW01V Date Sampled:06/10/2015 0915 Date Received: 06/11/2015							Laboratory ID Matrix	: QF10006-0 : Aqueous	13		
RunPrep Method15030B	Analytical Method 8260B	Dilution 1		is Date Analyst 015 0401 PMM2	Prep	Date	Batch 77325				
Parameter		Νι	CAS umber	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run
Benzene		71	1-43-2	8260B	0.45	U	5.0	0.45	0.21	ug/L	1
Ethylbenzene		100)-41-4	8260B	2.6	J	5.0	0.51	0.21	ug/L	1
Naphthalene		91	1-20-3	8260B	47		5.0	0.96	0.14	ug/L	1
Toluene		108	3-88-3	8260B	0.48	U	5.0	0.48	0.24	ug/L	1
Xylenes (total)		1330	0-20-7	8260B	4.1	J	5.0	0.57	0.19	ug/L	1
Surrogate	Q %	Run 1 Recovery	Accepta / Limit								
Bromofluorobenzene		88	75-12	0							
1,2-Dichloroethane-d4		97	70-12	0							
Toluene-d8		88	85-12	0							

85-115

90

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeQ = Surrogate failureND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaL = LCS/LCSD failureWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"S = MS/MSD failure

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Dibromofluoromethane

Level 1 Report v2.1

Client: AECOM - Resolution Consultants

Description: BEALB518TW01WG20150610

Laboratory ID: QF10006-013

Date Sampled:06/10/2015 0915

Matrix: Aqueous

Date Received: 06/11/2015

RunPrep Method13520C	Analytical Method Dil 8270D (SIM)	•	vsis Date Analy 2015 1903 RBH	•		Batch 57 77073		
Parameter		CAS Number	Analytical Method	Result	Q	LOQ	LOD	DL Units Run
Benzo(a)anthracene		56-55-3	8270D (SIM)	0.040	U	0.20	0.040	0.019 ug/L 1
Benzo(b)fluoranthene		205-99-2	8270D (SIM)	0.040	U	0.20	0.040	0.019 ug/L 1
Benzo(k)fluoranthene		207-08-9	8270D (SIM)	0.040	U	0.20	0.040	0.024 ug/L 1
Chrysene		218-01-9	8270D (SIM)	0.040	U	0.20	0.040	0.021 ug/L 1
Dibenzo(a,h)anthracene		53-70-3	8270D (SIM)	0.080	U	0.20	0.080	0.040 ug/L 1
Surrogate	Rui Q % Rec							
2-Methylnaphthalene-d10	7	'4 15- <i>'</i>	139					
Fluoranthene-d10	7	1 23-1	154					

PQL = Practical quantitation limit B = Detected in the method blank E = Quantitation of compound exceeded the calibration range H = Out of holding time Q = Surrogate failure ND = Not detected at or above the MDL $J = Estimated result < PQL and <math>\ge MDL$ $\mathsf{P}=\mathsf{The}\;\mathsf{RPD}$ between two GC columns exceeds 40% N = Recovery is out of criteria L = LCS/LCSD failure S = MS/MSD failure Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com

Level 1 Report v2.1

Appendix D Laboratory Analytical Report – Permanent Well Groundwater

Client: AECOM - Resolut	ion Consultants						Laboratory ID	:RG27006	-018		
Description: BEALB518MW01	NG20160726						Matrix:	Aqueous			
Date Sampled:07/26/2016 1440											
Date Received: 07/27/2016											
Run Prep Method 1 5030B	Analytical Method 8260B	Dilution 1	,	is Date Analyst 016 0122 ECP	Prep	Date	Batch 18488				
		(CAS	Analytical							
Parameter		Num	ıber	Method	Result	Q	LOQ	LOD	DL	Units	Run
Benzene		71-4	43-2	8260B	0.80	U	1.0	0.80	0.40	ug/L	1
Ethylbenzene		100-4	41-4	8260B	1.5		1.0	0.80	0.40	ug/L	1
Naphthalene		91-2	20-3	8260B	20		1.0	0.80	0.40	ug/L	1
Toluene		108-8	38-3	8260B	0.80	U	1.0	0.80	0.40	ug/L	1
Xylenes (total)		1330-2	20-7	8260B	2.6		1.0	0.80	0.40	ug/L	
Surrogate		Run 1 Recovery	Accepta Limi								
Bromofluorobenzene		101	85-11	4							
Dibromofluoromethane		95	80-11	9							
1,2-Dichloroethane-d4		99	81-11	8							
Toluene-d8		104	89-11	2							

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeQ = Surrogate failureND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaL = LCS/LCSD failureWhere applicable, all soil sample analysis ar reported on a dry weight basis unless flagged with a "W"S = MS/MSD failure

Client: AECOM - Resolution Consultants

Description: BEALB518MW01WG20160726

Date Sampled:07/26/2016 1440

Laboratory ID: RG27006-018 Matrix: Aqueous

Date Received: 07/27/2016

Run Prep Method 1 3520C	Analytical Method 8270D		ysis Date Analyst /2016 1855 RBH	Prep Date 08/01/2016 12	Batch 36 18706			
Parameter		CAS Number	Analytical	Result Q	LOQ	LOD	DL	Units Rur
Benzo(a)anthracene		56-55-3	Method 8270D	0.10 U	0.20	0.10	0.040	ug/L 1
Benzo(b)fluoranthene		205-99-2	8270D	0.16 J	0.20	0.10	0.040	ug/L 1
Benzo(k)fluoranthene		207-08-9	8270D	0.15 J	0.20	0.10	0.040	ug/L 1
Chrysene		218-01-9	8270D	0.10 U	0.20	0.10	0.040	ug/L 1
Dibenzo(a,h)anthracene		53-70-3	8270D	0.15 J	0.20	0.10	0.040	ug/L 1
Surrogate		Run 1 Accept Recovery Lin	ance nits					
Nitrobenzene-d5		67 44-1	20					
2-Fluorobiphenyl		63 44-1	19					
Terphenyl-d14		86 50-1	34					

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeQ = Surrogate failureND = Not detected at or above the MDLJ = Estimated result < PQL and \geq MDLP = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaL = LCS/LCSD failureWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"S = MS/MSD failure

Appendix E Regulatory Correspondence

DHEC

PROMOTE PROTECT PROSPER Catherine B. Templeton, Director

May 15, 2014

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: IGWA

Laurel Bay Underground Storage Tank Assessment Reports for: *See attached sheet*

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received the above referenced Underground Storage Tank Assessment Reports for the addresses listed above. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

The Department has reviewed the referenced assessment reports. The submitted analytical results indicate that petroleum constituents are above established Risk-Based Screening Levels and additional investigation is warranted. Specifically, the Department requests that a groundwater sampling proposal be generated to determine if there has been an impact to groundwater at this site.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at kriegkm@dhec.sc.gov or 803-898-0255.

Sincerely,

Kent Krieg Department of Defense Corrective Action Section Bureau of Land and Waste Management South Carolina Department of Health and Environmental Control

Cc: Russell Berry (via email) Craig Ehde (via email)

DHEC

PROMOTE PROTECT PROSPER

Catherine B. Templeton, Director

Attachment to: Krieg to Drawdy Subject: IGWA Dated 5/15/2014

Laurel Bay Underground Storage Tank Assessment Reports for: (121 addresses/139 tanks)

137 Laurel Bay Tank 2	387 Acorn
139 Laurel Bay	392 Acorn Tank 2
229 Cypress Tank 2 ·	396 Acorn Tank 1
261 Beech Tank 1 -	396 Acorn Tank 2
261 Beech Tank 3	430 Elderberry
273 Birch Tank 1 🔹	433 Elderberry
273 Birch Tank 2	439 Elderberry
273 Birch Tank 3	440 Elderberry
276 Birch Tank 2 ·	442 Elderberry
278 Birch Tank 2	443 Elderberry
291 Birch Tank 2	444 Elderberry Tank 1
300 Ash -	445 Elderberry
304 Ash *	446 Elderberry
314 Ash Tank 1	448 Elderberry
314 Ash Tank 2	449 Elderberry
322 Ash Tank 2 *	451 Elderberry
323 Ash *	453 Elderberry
324 Ash *	456 Elderberry Tank 1
325 Ash Tank 1 *	456 Elderberry Tank 2
325 Ash Tank 2	458 Elderberry Tank 1
326 Ash -	458 Elderberry Tank 3
336 Ash *	464 Dogwood
339 Ash •	466 Dogwood
343 Ash Tank 1 *	467 Dogwood
344 Ash Tank 1	468 Dogwood
348 Ash *	469 Dogwood
349 Ash Tank 1	471 Dogwood Tank 2
353 Ash Tank 1	471 Dogwood Tank 3
362 Aspen *	475 Dogwood Tank 1
376 Aspen *	475 Dogwood Tank 2
380 Aspen *	516 Laurel Bay Tank 1 (UST#03747)
383 Aspen Tank 2 *	518 Laurel Bay

Laurel Bay Underground Storage Tank Assessment Reports for: (121 addresses/139 tanks) cont.

531 Laurel Bay	1219 Cardinal	
532 Laurel Bay	1272 Albatross	
635 Dahlia Tank 2	1305 Eagle	
638 Dahlia	1353 Cardinal	
640 Dahlia Tank 1	1356 Cardinal	
640 Dahlia Tank 2	1357 Cardinal	
645 Dahlia	1359 Cardinal	
647 Dahlia	1360 Cardinal	
648 Dahlia Tank 2	1361 Cardinal	
650 Dahlia Tank 1	1368 Cardinal	
650 Dahlia Tank 2	1370 Cardinal Tank 1	
652 Dahlia Tank 1	1377 Dove	
652 Dahlia Tank 2	1381 Dove	
760 Althea	1382 Dove	
763 Althea	1384 Dove	
771 Althea	1385 Dove	
927 Albacore	1389 Dove	
1015 Foxglove	1391 Dove	
1046 Gardenia	1392 Dove	
1062 Gardenia Tank 2	1393 Dove Tank 1	
1070 Heather	1393 Dove Tank 2	
1072 Heather	1406 Eagle	
1102 Iris Tank 1	1407 Eagle Tank 1	
1107 Iris	1411 Eagle Tank 1	
1126 Iris	1411 Eagle Tank 2	
1129 Iris	1412 Eagle	
1132 Iris	1413 Albatross	
1133 Iris Tank 1	1414 Albatross	
1138 Iris	1422 Albatross	
1144 Iris Tank 1	1425 Albatross	
1144 Iris Tank 2	1426 Albatross	
1148 Iris Tank 1	1432 Dove	
1148 Iris Tank 2	1434 Dove	
1161 Jasmine	1436 Dove	
1167 Jasmine	1438 Dove Tank 1	
1170 Jasmine	1440 Dove	
1190 Bobwhite	1442 Dove Tank 1	
1192 Bobwhite		

Catherine E. Heigel, Director Promoting and protecting the health of the public and the environment

> Division of Waste Management Bureau of Land and Waste Management

February 22, 2016

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: Approval and Concurrence with Draft Final Initial Groundwater Investigation Report-May and June 2015 Laurel Bay Military Housing Area Multiple Properties Dated October 2015

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received groundwater data in the above referenced Groundwater Investigation Report for the addresses attached. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

Per the Department's request, groundwater samples were collected from the attached referenced addresses. The Department reviewed the groundwater data and previous investigations and it agrees with the conclusions and recommendations included in the document. To further assess the impact to groundwater, permanent wells should be installed at the 52 stated addresses. For the remaining 91 addresses, there is no indication of contamination on the property and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at petruslb@dhec.sc.gov or 803-898-0294.

Sincerely,

11nt

Laurel Petrus RCRA Federal Facilities Section

Attachment: Specific Property Recommendations

Cc: Russell Berry, EQC Region 8 (via email) Shawn Dolan, Resolution Consultants (via email) Bryan Beck, NAVFAC MIDATLANTIC (via email) Craig Ehde (via email)

Attachment to: Petrus to Drawdy

Subject: Draft Final Initial Groundwater Investigation Report-May and June 2015 Specific Property Recommendations Dated February 22, 2016

Draft Final Initial Groundwater Investigation Report for (143 addresses)

273 Birch Drive	1192 Bobwhite Drive	
325 Ash Street	1194 Bobwhite Drive	
326 Ash Street	1272 Albatross Drive	_
336 Ash Street	1352 Cardinal Lane	
343 Ash Street	1356 Cardinal Lane	100
353 Ash Street	1359 Cardinal Lane	
430 Elderberry Drive	1360 Cardinal Lane	
440 Elderberry Drive	1362 Cardinal Lane	
456 Elderberry Drive	1370 Cardinal Lane	
458 Elderberry Drive	1382 Dove Lane	
468 Dogwood Drive	1384 Dove lane	
518 Laurel Bay Blvd	1385 Dove Lane	
635 Dahlia Drive	1389 Dove Lane	
638 Dahlia Drive	1392 Dove Lane	
640 Dahlia Drive	1393 Dove Lane	
647 Dahlia Drive	1407 Eagle Lane	
648 Dahlia Drive	1411 Eagle Lane	
650 Dahlia Drive	1418 Albatross Drive	
652 Dahlia Drive	1420 Albatross Drive	_
760 Althea Street	1426 Albatross Drive	_
1102 Iris Lane	1429 Albatross Drive	
1132 Iris Lane	1434 Dove Lane	
1133 Iris Lane	1436 Dove Lane	
1144 Iris Lane	1440 Dove Lane	
1148 Iris Lane	1442 Dove Lane	
1186 Bobwhite Drive	1444 Dove Lane	
No Fur	ther Action recommendation (91 addresses):	-
137 Laurel Bay Blvd	771 Althea Street	
139 Laurel Bay Blvd	927 Albacore Street	
229 Cypress Street	1015 Foxglove Street	
261 Beech Street	1046 Gardenia Drive	
276 Birch Drive	1062 Gardenia Drive	
278 Birch Drive	1070 Heather Street	
291 Birch Drive	1072 Heather Street	

300 Ash Street	1107 Iris Lane	
304 Ash Street	1126 Iris Lane	
314 Ash Street	1129 Iris Lane	
322 Ash Street	1138 Iris Lane	
323 Ash Street	1161 Jasmine Street	
324 Ash Street	1167 Jasmine Street	
339 Ash Street	1170 Jasmine Street	
344 Ash Street	1190 Bobwhite Drive	
348 Ash Street	1219 Cardinal Lane	
349 Ash Street	1305 Eagle Lane	
362 Aspen Street	1353 Cardinal Lane	
376 Aspen Street	1354 Cardinal Lane	
380 Aspen Street	1357 Cardinal Lane	
383 Aspen Street	1361 Cardinal Lane	
387 Acorn Drive	1364 Cardinal Lane	
392 Acorn Drive	1368 Cardinal Lane	
396 Acorn Drive	1377 Dove Lane	
433 Elderberry Drive	1381 Dove Lane	
439 Elderberry Drive	1391 Dove Lane	
442 Elderberry Drive	1403 Eagle Lane	
443 Elderberry Drive	1404 Eagle Lane	
444 Elderberry Drive	1405 Eagle Lane	
445 Elderberry Drive	1406 Eagle Lane	
446 Elderberry Drive	1408 Eagle Lane	
448 Elderberry Drive	1410 Eagle Lane	
449 Elderberry Drive	1412 Eagle Lane	
451 Elderberry Drive	1413 Albatross Drive	
453 Elderberry Drive	1414 Albatross Drive	
464 Dogwood Drive	1417 Albatross Drive	
466 Dogwood Drive	1421 Albatross Drive	
467 Dogwood Drive	1422 Albatross Drive	
469 Dogwood Drive	1425 Albatross Drive	
471 Dogwood Drive	1427 Albatross Drive	
475 Dogwood Drive	1430 Dove Lane	
516 Laurel Bay Blvd	1432 Dove Lane	
531 Laurel Bay Blvd	1438 Dove Lane	
532 Laurel Bay Blvd	1453 Cardinal Lane	
645 Dahlia Drive	1455 Cardinal Lane	
763 Althea Street		

Attachment to: Petrus to Drawdy Subject: Draft Final Initial Groundwater Investigation Report-May and June 2015 Specific Property Recommendations Dated February 22, 2016, Page 2

March 9, 2017

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: Tank Removal Report 434 Elderberry Drive, October 2013 and Draft Final Groundwater Assessment Report June and July 2016

Dear Mr. Drawdy:

The South Carolina Department of Health and Environmental Control (the Department) received groundwater data from permanent monitoring well installations in the Draft Final Groundwater Assessment Report June and July 2016, Laurel Bay Military Housing Area for the addresses shown in the attachment. The Department also reviewed the tank removal report for 434 Elderberry. The tank was removed in 2013. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

The tank removal report for 434 Elderberry Drive indicates no soil contamination was found on the property. No Further investigation is required at this time at 434 Elderberry Drive.

Per the Department's request, groundwater samples were collected from the attached referenced addresses. The Department reviewed the groundwater data and previous investigations and it agrees with the conclusions and recommendations included in the document. To further assess the impact to groundwater, groundwater monitoring should begin at the fifteen stated addresses. For the remaining twelve addresses, there is no indication of contamination on the property and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at petruslb@dhec.sc.gov or 803-898-0294.

Sincerely,

2 pt

Laurel Petrus, Environmental Engineer Associate Bureau of Land and Waste Management

Cc: Russell Berry, EQC Region 8 Shawn Dolan, Resolution Consultants Bryan Beck, NAVFAC MIDLANT Attachment to: Petrus to Drawdy Dated March 9, 2017

Draft Final Initial Groundwater Assessment Report for (27 addresses)

273 Birch Drive	456 Elderberry Drive	
325 Ash Steet	458 Elderberry Drive	
326 Ash Street	648 Dahlia Drive	
330 Ash Street	650 Dahlia Drive	
336 Ash Street	1132 Iris Lane	
343 Ash Street	1144 Iris Lane	
353 Ash Street	1148 Iris Lane	2004/05/20
440 Elderberry Drive		
No Further Action recommendation (1	12 addresses):	
430 Elderberry Drive	647 Dahlia Drive	
468 Dogwood Drive	652 Dahlia Drive	
518 Laurel Bay Blvd	760 Althea Street	
	1102 iris Lane	
635 Dahlia Drive 638 Dahlia Drive	1133 Iris Lane 1272 Albatross Drive	

Tank Removal Report October 2013 (1 address)

No Further Action 434 Elderberry Drive